K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Ta có: \(2x=3y\Leftrightarrow2x-3y=0\)

\(\left|x-2y\right|=5\Leftrightarrow\left[{}\begin{matrix}x-2y=5\\-x+2y=5\end{matrix}\right.\)

Ta có hệ pt: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3y=0\\x-2y=5\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3y=0\\-x+2y=5\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-15\\y=-10\end{matrix}\right.\\\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=\frac{2.\left(-15\right)}{5}=-6\\z=\frac{2.15}{5}=6\end{matrix}\right.\)

Với x=-15 ; z=-6 thì \(3x-2z=3.\left(-15\right)-2.\left(-6\right)=-33\)

Với x=15 ; z=6 thì \(3x-2z=3.15-2.6=33\)

Vậy giá trị lớn nhất của 3x-2z=33 khi x=15, z=6 và y=10

25 tháng 4 2018

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

tham khảo nhé

11 tháng 1 2019

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

Tham khảo ơ link này nhé!

12 tháng 3 2019

1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)

*TH1: Nếu x-2y = 5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)

*TH2: Nếu x-2y = -5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)

Vậy giá trị nhỏ nhất của 3x - 2z là -57.

2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)

Dấu "=" xảy ra khi x = 0.

25 tháng 4 2018

| x - 2y | = 5

\(\Rightarrow\)\(\orbr{\begin{cases}x-2y=5\\x-2y=-5\end{cases}}\)

Theo bài ra : 2x = 3y = 5z

\(\Rightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{3x}{45}=\frac{2y}{20}=\frac{2z}{12}=\frac{3x-2z}{45-12}=\frac{x-2y}{15-20}\)

+) với x- 2y = 5 thì \(\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=-1\)\(\Rightarrow3x-2z=-33\)

+) với  x - 2y = -5 thì \(\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)\(\Rightarrow\frac{3x-2z}{45-12}=\frac{3x-2z}{33}=1\)\(\Rightarrow3x-2z=33\)

Vậy GTLN của 3x - 2z là 33

25 tháng 4 2018

\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)

Vậy ...

\(\left|\frac{3y}{2}-2y\right|=5\)" thay \(x=\frac{3y}{2}\)vào "

\(\left|\frac{3y-4y}{2}\right|=5\)" quy đồng"

\(\left|\frac{-y}{2}\right|=5\)" rút gọn

Giá trị tuyệt đối với -y ta được:

\(\frac{y}{2}=5\Leftrightarrow y=10\)

Tương tự ta có :

\(x=\frac{5z}{2};2y=\frac{10z}{3}\)

\(\left|\frac{5z}{2}-\frac{10z}{3}\right|=5\Leftrightarrow\left|\frac{15z-20z}{6}\right|=5\Leftrightarrow\left|\frac{-5z}{6}\right|=5\)

Gía trị tuyệt đối  với -5z âm ta được :

 \(5z=30\Leftrightarrow z=6\)

Tương tự với x suy ra x = 15 "làm tắt "

Từ 1,2,3

Suy ra x = 15 ; y = 10 ; z = 6

Thay số ta được :

\(3.15-2.6=45-12=33\)

12 tháng 3 2018

\(2x=3y\Leftrightarrow x=\frac{3y}{2}\)

vậy .... 

\(\text{|}\frac{3y}{2}-2y\text{|}=5\) " thay x=3y/2 vào "

\(\text{|}\frac{3y-4y}{2}\text{|}=5\) " quy đồng"

\(\text{|}\frac{-y}{2}\text{|}=5\)" rút gọn "

phá trị tuyệt đối với -y ta được

\(\frac{y}{2}=5\Leftrightarrow y=10\)

tượng tự ta có

\(x=\frac{5z}{2};2y=\frac{10z}{3}\)

\(\text{|}\frac{5z}{2}-\frac{10z}{3}\text{|}=5\Leftrightarrow\text{|}\frac{15z-20z}{6}\text{|}=5\Leftrightarrow\text{|}\frac{-5z}{6}|=5\)

phá trị tuyệt đối với -5z âm ta được

\(5z=30\Leftrightarrow z=6\)

tương tự với x suy ra x=15 " làm tắt"

từ 1,2,3

suy ra x=15 , y =10 , z=6

thay số ta được

\(3.15-2.6=45-12=33\)

29 tháng 5 2018

1.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)= \(\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\dfrac{1}{x+y+z}\) = 2

=> x+y+z = \(\dfrac{1}{2}\)

Ta có: \(\dfrac{y+z+1}{x}\) = 2

=> y+z+1 = 2x => x+y+z+1 = 3x <=> \(\dfrac{3}{2}=3x\)

<=> x = \(\dfrac{1}{2}\)

Tương tự thế vào \(\dfrac{x+z+2}{y}\) tính được y =\(\dfrac{5}{6}\)

=> z = -\(\dfrac{5}{6}\)

=> A = 2016.\(\dfrac{1}{2}\) = 1008