K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dễ dàng nhận thấy dấu "=" xảy ra <=> z =60, x = y = 20

=> z = 3x = 3y

Có x+y+z = 100 => x+y = 100 - z

Xét z + 3x + 3y \(\ge3\sqrt[3]{z.3x.3y}\)

=> 100 + 2(x+y) \(\ge3\sqrt[3]{9xyz}\)

=> 100 + 2(100-z) \(\ge3\sqrt[3]{9xyz}\)

Ta có: z \(\ge60\) => \(-z\le-60\) => 100 + 2(100-z) \(\le100+2\left(100-60\right)\)

=> \(280\text{ }\) \(\ge3\sqrt[3]{9xyz}\)

=> xyz \(\le24000\)

Dấu "=" xảy ra <=> z =60, x = y = 20

có cái đoạn 280 bn sửa giúp mik thành 180 nhé

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

9 tháng 4 2019

Áp dụng bđt Cô-si cho 2 số dương, ta có

\(A=xyz\le\frac{\left(x+y\right)^2z}{4}=\frac{\left(x+y\right)\left(100-z\right)z}{4}\) (Vì\(x+y+z=100\)

\(A\le\frac{\left(x+y\right)3\left(100-z\right)2z}{24}\le\frac{\left(x+y\right)\left(300-3z+2z\right)^2}{24}=\frac{\left(x+y\right)\left(300-z\right)^2}{96}\)

Mà \(z\ge60\) \(x+y+z=100\Rightarrow x+y\le40\)

\(\Rightarrow A\le\frac{40\left(300-60\right)^2}{96}=24000\) 

Dấu '=' xảy ra khi \(z=60;x=y=40\)

9 tháng 4 2019

dòng cuối mình viết lộn nha \(x=y=20\) chứ

6 tháng 6 2023

Từ giả thiết, x+y=100-z\(\leq\)40

Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)

Dấu "=" xảy ra khi x=y=20 và z=60

NV
2 tháng 3 2021

Đặt \(P=xyz\le\dfrac{1}{4}\left(x+y\right)^2z=\dfrac{1}{4}\left(x+y\right)^2\left(2016-x-y\right)\)

Do \(\left\{{}\begin{matrix}x\ge2\\y\ge9\\z\ge1951\\x+y=2016-z\end{matrix}\right.\) \(\Rightarrow11\le x+y\le65\)

Đặt \(x+y=a\Rightarrow11\le a\le65\)

\(4P\le a^2\left(2016-a\right)=-a^3+2016a^2-8242975+8242975\)

\(4P\le\left(65-a\right)\left[\left(a^2-65^2\right)-1951\left(a-11\right)-144051\right]+8242975\le8242975\)

\(\Rightarrow P\le\dfrac{8242975}{4}\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\dfrac{65}{2}\\z=1951\end{matrix}\right.\)

2 tháng 3 2021

Áp dụng BĐT Cô-si với ba số x,y,z không âm :

\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\\ \Rightarrow\dfrac{2016}{3}= 672\ge\sqrt[3]{xyz}\\ \Leftrightarrow xyz \le(672)^3\\ \)

Dấu = xảy ra khi x = y = z = 672

Vậy GTLN của xyz là 6723 khi x = y = z = 672

6 tháng 7 2018

Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)

\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)

                    \(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

                      \(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)  (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)

\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)

Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)

                                                \(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)

Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)

Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

                     \(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)

Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z

P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý