Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, biến đổi tương đương là bn ra
b, ap dung bdt cauchy \(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)
tương tự ta cũng có \(\frac{ca}{b}+\frac{ab}{c}\ge2a\) \(\frac{bc}{a}+\frac{ab}{c}\ge2c\)
cộng vế vs về các bdt trên ta đc \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
suy ra dpcm
\(15P=3a.5b\)\(\le\frac{\left(3a+5b\right)^2}{4}=\frac{12^2}{4}=36\)
\(\Rightarrow P\le\frac{36}{15}=\frac{12}{5}\) dau = xay ra khi \(\hept{\begin{cases}3a=5b\\3a+5b=12\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ gt, suy ra
\(\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)+\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+2\right)+\left(x+y+2\right)^2=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left(2x^2-2xy+2y^2+2x+2y+4\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)
Do đó: \(x+y+2=0\Leftrightarrow x+y=-2\)
Mặt khác \(xy>0\Rightarrow x< 0;y< 0\)
Áp dụng AM-GM, ta có
\(\sqrt{\left(-x\right)\left(-y\right)}\le\dfrac{\left(-x\right)+\left(-y\right)}{2}=1\) nên \(xy\le1\)\(\Rightarrow\dfrac{-2}{xy}\le-2\)
\(M=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\le-2\)
GTLN của M là -2 khi x=y=-1
Áp dụng Cauchy-Schwarz dạng Engel, ta có
\(VT=\dfrac{a^6}{a^3+a^2b+b^2a}+\dfrac{b^6}{b^3+b^2c+c^2b}+\dfrac{c^6}{c^3+c^2a+ca^2}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Mặt khác: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
Tương tự: \(b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(3\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Rightarrow\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\dfrac{a^3+b^3+c^3}{3}\)
Vậy ta có đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=c
x + xy+ y = 7,04201 = a <=> x+1. y+1 = a+1
y+yz + z = 15,91077 = b <=> y+ 1 . z+ 1= b+ 1
z+ zx+ x = 9,61707= c <=> z+ 1. x+ 1 = c +1
x+ 12. y+ 12 z+ 12= a +1. b+ 1 . c+ 1
Vì x, y ,z không âm => x+1. y+1 . z+1 = \(\sqrt{a+1.b+1.c+1}\)
Kết quả : \(E\approx37,99849\)
Mà nói thật nhé bài của lớp 9 đó là dạng tính casio