\(\forall a\ge1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

* Với \(a=1\) ta thấy BĐT đúng.

* Ta xét khi \(a>1\)

Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).

Khi đó ta có 

Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)

Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)

Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)

Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được

\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)

31 tháng 7 2016

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k\)

\(y=3k\)

\(z=5k\)

Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:

\(2k.3k.5k=810\)

\(30k^3=810\)

\(k^3=27\)

\(k^3=3^3\)

\(\Rightarrow k=3\)

\(\Rightarrow x=2k=2.3=6\)

\(y=3k=3.3=9\)

\(z=5k=5.3=15\)

Vậy \(x=6;y=9;z=15\)

31 tháng 7 2016

Hỏi đáp Toán

27 tháng 7 2016

Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144

=>ta sử dụng phép phân phối có a+b+c chung

=>(a+b+c)(a+b+c)=1/144

=>a+b+c=1/12

từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6

27 tháng 7 2016

cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được

31 tháng 7 2016

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

=> \(x=2k+1\)

\(y=3k+2\)

\(z=4k+3\)

Thay \(x=2k+1;y=3k+2;z=4k+3\) vào \(2x+3y-z=50\) ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-4\left(4k+3\right)=50\)

\(4k+2+9k+6-4k-3=50\)

\(9k+5=50\)

\(9k=45\)

\(k=5\)

\(\Rightarrow x=2k+1=2.5+1=11\)

\(y=3k+2=3.5+2=17\)

\(z=4k+3=4.5+3=23\)

Vậy \(x=11;y=17;z=23\)

1 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Suy ra: \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)

\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d.\left(2k+13\right)}{d.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)

Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) khi: \(\frac{a}{b}=\frac{c}{d}\)

cảm ơn bạn nhìu nha yeu

16 tháng 7 2016

\(B=\left[\frac{x^2-y^2}{xy}-\frac{1}{x+y}\left(\frac{x^2}{y}-\frac{y^2}{x}\right)\right]:\frac{x-y}{x}\)

=>\(B=\left[\frac{x^2-y^2}{xy}-\frac{1}{x+y}\left(\frac{x^3}{xy}-\frac{y^3}{xy}\right)\right].\frac{x}{x-y}\)

=>\(B=\left(\frac{x^2-y^2}{xy}-\frac{1}{x+y}.\frac{x^3-y^3}{xy}\right).\frac{x}{x-y}\)

=>\(B=\left(\frac{x^2-y^2}{xy}-\frac{1}{x+y}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy}\right).\frac{x}{x-y}\)

=>\(B=\left(\frac{x^2-y^2}{xy}-\frac{x^2-xy+y^2}{xy}\right).\frac{x}{x-y}\)

=>\(B=\frac{x^2-y^2-x^2+xy-y^2}{xy}.\frac{x}{x-y}\)

=>\(B=\frac{xy}{xy}.\frac{x}{x-y}\)

=>\(B=1.\frac{x}{x-y}\)

=>\(B=\frac{x}{x-y}\)

7 tháng 12 2016

Bài 1:
Giải:

Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)

+) \(\frac{x}{21}=4\Rightarrow x=84\)

+) \(\frac{y}{14}=4\Rightarrow y=56\)

+) \(\frac{z}{15}=4\Rightarrow z=60\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(84;56;60\right)\)

Bài 2:
Giải:

Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)

\(\Rightarrowđpcm\)
 

7 tháng 12 2016

BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau

BT2 là cũng vậy r ss

 

18 tháng 8 2016
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
 
 
18 tháng 8 2016

Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\)(a, b, m ∈ Z, b # 0)
Vì x < y nên ta a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b \(\Rightarrow\) a + a < a + b \(\Rightarrow\) 2a < a + b
Vì 2a < a + b nên x < z                                    (1)
Vì a < b \(\Rightarrow\) a + b < b + b \(\Rightarrow\) a + b < 2b
Do a + b < 2b nên z < y                                   (2)
Từ (1) và (2) ta \(\Rightarrow\) x < z < y

21 tháng 7 2016

a.

\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)

\(\frac{5x}{35}=3\Rightarrow x=\frac{35\times3}{5}=21\)

\(\frac{2y}{6}=3\Rightarrow y=\frac{6\times3}{2}=9\)

Vậy \(x=21\) và \(y=9\)

b.

\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{34}{17}=2\)

\(\frac{2x}{38}=2\Rightarrow x=\frac{38\times2}{2}=38\)

\(\frac{y}{21}=2\Rightarrow y=2\times21=42\)

Vậy \(x=38\) và \(y=42\)

c.

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x=\sqrt{1}=\pm1\)

\(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y=\sqrt{\frac{16}{4}}=\sqrt{4}=\pm2\)

\(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z=\sqrt{\frac{36}{4}}=\sqrt{9}=\pm3\)

Vậy \(x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)

d.

Cách 1:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)

Vậy \(x=2\) và \(y=3\)

Cách 2:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)

\(2x+1=0\Rightarrow x=-\frac{1}{2}\)

\(3y-2=0\Rightarrow y=\frac{2}{3}\)

Vậy \(x=-\frac{1}{2}\) và \(y=\frac{2}{3}\)

Chúc bạn học tốt ^^

21 tháng 7 2016

mk trả lời ở dưới rồi nhé

 

6 tháng 9 2016

bạn vào link này xem nhé

http://olm.vn/hoi-dap/question/97037.html

6 tháng 9 2016

minh ko tin dc ban oi