Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0
Tới đây bạn tự làm nhé :)
\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)
Dấu = xảy ra <=>x=y=z=1
đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)
Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)
Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)
\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)
\(\Rightarrow E\ge\frac{3}{2}\)
Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))
Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) .
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0
Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)
Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)
\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)
Tương tự ta chứng minh được:
\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)
Cộng vế 3 BĐT trên lại:
\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)
\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)
Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:
\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)
\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)
\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)
\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)
Vậy Max(A) = 1 khi x = y = z = 1
Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)
\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)
Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)
-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)
Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)
Theo BĐT AM - GM cho 3 số dương, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3zx+x+y+z\)
\(\ge3xy+3zx+3\sqrt[3]{xyz}=3zx+3xy+3=3\left(zx+xy+1\right)\)(Do xyz = 1)
\(\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(zx+xy+1\right)}\)(1)
Tương tự ta có: \(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3\left(xy+yz+1\right)}\)(2); \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3\left(yz+zx+1\right)}\)(3)
Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được: \(P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\)
Ta có BĐT: \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, với a, b dương thì (*)\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Áp dụng BĐT trên và sử dụng giả thiết xyz = 1, ta được: \(\frac{1}{xy+yz+1}=\frac{\sqrt[3]{xyz}}{y\left(z+x\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{xyz}}{y\left[\left(\sqrt[3]{z}\right)^3+\left(\sqrt[3]{x}\right)^3\right]+\sqrt[3]{xyz}}\le\frac{\sqrt[3]{xyz}}{y\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^3zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^2}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{zx}}{\sqrt[3]{y}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{zx}}=\frac{\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(*)
Tương tự: \(\frac{1}{yz+zx+1}\le\frac{\sqrt[3]{xy}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(**); \(\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{yz}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(***)
Cộng theo từng vế của 3 BĐT (*), (**), (***), ta được: \(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}=1\)
\(\Rightarrow P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\le\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z = 1
ta có \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}\)
hay \(xy+yz+xz=x+y+z\)do xyz=1 nên PT tương đương
\(xyz-xy-yz-xz+y+y+z-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(yz-y-z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)\(\Rightarrow\)hoăc x=1 hoặc y=1 hoặc z=1
xét x=1 ta có P=0
tương tự với y và z ta đều có P=0
Vậy P=0
gbkjlgbendy8wdceihrosmwjaimek,op