K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Lần lượt áp dụng bất đẳng thức cô-si ta có: \(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}.\)
Suy ra: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz.\)
Dấu bằng xảy ra khi x = y = z.

29 tháng 10 2018

(x + y)(y + z)(x + z) = 8xyz

⇒ (xy + xz + y2 + yz)(x + z) - 8xyz = 0

⇒ x2y + xyz + x2z + xz2 + y2x + y2z + xyz + yz2 - 8xyz = 0

⇒ x2y - 2xyz + yz2 + xy2 - 2xyz + xz2 + x2z - 2xyz + y2z = 0

⇒ y(x - z)2 + x(y - z)2 + z(x - y)2 = 0

mà x, y, z > 0 (gt)

\(\left\{{}\begin{matrix}\left(x-z\right)^2=0\\\left(y-z\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-z=0\\y-z=0\\x-y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=z\\y=z\\x=y\end{matrix}\right.\)

⇒ x = y = z

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

22 tháng 8 2021

Áp dụng BĐT AM-GM có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu "=" xảy ra khi x=y=z

\(\Rightarrow\) tam giác ABC là tam giác đều.

11 tháng 10 2018

bạn tham khảo ở đây: Câu hỏi của Nguyễn Phương Linh - Toán lớp 8 - Học toán với OnlineMath

26 tháng 11 2017

(x+y)(y+z)(x+z)=8xyz

<=>\((xy+xz+y^2+yz)(x+z)=8xyz\)

<=>\(x^2y+x^2z+y^2z+xyz+xyz+xz^2+z^2y+yz^2=8xyz\)

<=> \(x^2y+x^2z+y^2x+xz^2+y^2z+yz^2-6xyz=0\)

<=> \(y(x^2+z^2-2xz)+x(y^2-2yz+z^2)+z(y^2-2yx+x^2)=0\)

<=>\(y(x-z)^2+x(y-z)^2+z(x-y)^2=0\)

Mà x,y,z dương

=> \((x-z)^2=0=>x=z\)

\((x-y)^2=0=>x=y\)

\((y-z)^2=0=>y=z\)

Vậy x=y=z

28 tháng 11 2017

cảm ơn ạ

7 tháng 11 2021

\(A=\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)\)

\(áp\) \(dụng\) \(bđt:\) \(\)\(AM-GM:a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow A^2=\left(x+y-z\right)^2\left(y+z-x\right)^2\left(z+x-y^2\right)=\left(x+y-z\right)\left(y+z-x\right)\left(y+z-x\right)\left(z+x-y\right)\left(x+y-z\right)\left(z+x-y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y-z\right)\left(y+z-x\right)\le\dfrac{\left(x+y-z+y+z-x\right)^2}{4}\le\dfrac{4y^2}{4}\le y^2\\\left(y+z-x\right)\left(z+x-y\right)\le\dfrac{\left(y+z-x+z+x-y\right)^2}{4}\le z^2\\\left(x+y-z\right)\left(z+x-y\right)\le\dfrac{\left(x+y-z+z+x-y\right)^2}{4}\le x^2\\\end{matrix}\right.\)

\(\)\(\Rightarrow A^2\le x^2y^2z^2\le\left(xyz\right)^2\Rightarrow A\le xyz\)