Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
Ta có: A= \(\dfrac{xy+2y+1}{xy+x+y+1}+\dfrac{yz+2z+1}{yz+y+z+1}\) +\(\dfrac{zx+2x+1}{zx+z+x+1}\)
=\(\dfrac{xy+2y+1}{\left(x+1\right)\left(y+1\right)}+\dfrac{yz+2z+1}{\left(y+1\right)\left(z+1\right)}\) +\(\dfrac{zx+2x+1}{\left(x+1\right)\left(z+1\right)}\)
=\(\dfrac{\left(xy+2y+1\right)\left(z+1\right)}{\left(z+1\right)\left(y+1\right)\left(x+1\right)}\)+\(\dfrac{\left(yz+2z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)+\(\dfrac{\left(y+1\right)\left(zx+2x+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Đặt B =(z+1)(xy+2y+1)+(yz+2z+1)(x+1)+(y+1)(zx+2x+1)
=>B= xyz+2yz+z+xy+2y+1+xyz+2zx+x+yz+2z+1+xyz+2xy+y+xz+2x+1 = 3xyz+3yz+3z+3xy+3y+3+3xz+3x = 3(xyz+yz +x+1+xy+y+xz+z) =3[yz(x+1)+(x+1)+y(x+1)+z(x+1)] =3(x+1)(yz+y+z+1)=3(x+1)(y+1)(1+z)
=> A=\(\dfrac{B}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=\(\dfrac{3\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=3
Vậy A=3 với mọi x,y,z
a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.
Sửa lại đề là x;y;z khác -1.
\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:
\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)
\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm