K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

27 tháng 12 2016

Câu trả lời là thiếu dự kiện

5 tháng 12 2019

Ta có : \(x+y+z=0\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2=z^2-2xy\)

Tương tự ta có : \(y^2+z^2=x^2-2yz\)

\(x^2+z^2=y^2-2xz\)

Thay vào biểu thức ta có :

\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)

\(=\frac{x^2}{x^2-2yz-x^2}+\frac{y^2}{y^2-2xz-y}+\frac{z^2}{z^2-2xy-z^2}\)

\(=-\frac{x^2}{2yz}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)

\(=\frac{-x^3-y^3-z^3}{2xyz}=-\frac{x^3+y^3+z^3}{2xyz}\)

\(=\frac{3xyz}{2xyz}=-\frac{3}{2}\)

Chỗ \(x^3+y^3+z^3=3xyz\)là do \(x+y+z=0\)nhé, bạn cần chứng minh không ?

2 tháng 12 2018

\(x+y+z=0\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)

\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)

\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)

12 tháng 12 2016

Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2

vậy giá trị của biểu thức A= 2

8 tháng 8 2018

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

      \(\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\)

      \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\)

\(=\left(\frac{y}{z}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{x}{y}\right)+\left(\frac{z}{y}+\frac{z}{x}\right)\)

\(=y\left(\frac{1}{z}+\frac{1}{x}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{y}+\frac{1}{x}\right)\)

\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}=-1-1-1=-3\)

Vậy nên A = -3