K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Xét: \(x+y+z=xyz\Leftrightarrow\frac{x+y+z}{xyz}=1\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Mặt khác:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)<=>\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\sqrt{3}\right)^2\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.1=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)

7 tháng 4 2017

ủng hộ mk nha mọi người

13 tháng 1 2021

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)

\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\) 

Mà x+y+z=xyz

=> P+2=3=>P=1

Vậy P=1

7 tháng 11 2018

thay z = -(x+y) , y = -(z+x),... vao

=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0

1 tháng 3 2019

1 cách khá cục súc là nhân hết ra :))

4 tháng 9 2019

Pt tương đương:

\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)

Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)

Đồng thời:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Rồi cộng lại 

27 tháng 12 2016

Câu trả lời là thiếu dự kiện