\(\ge\)0. CM (x+y)(y+z)(z+x)  \(\ge\)8xyz

C...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

31 tháng 3 2018

Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)

=> x + y ≥ \(2\sqrt{xy}\) ( 1 )

y + z ≥ \(2\sqrt{yz}\) ( 2 )

x + z ≥ 2\(\sqrt{xz}\) ( 3 )

Nhân tưng vế của ( 1 , 2 , 3) , ta được :

( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)

<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz

31 tháng 3 2018

ta có (x+y)2 ≥ 4xy

(y+z)2≥ 4yz

(x+z)2≥4xz

nhân từng vế của bđt trên ta được

(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2

=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2

=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

BĐT Bunhiacopxky em chưa học cô ạ

Cô cong cách nào không ạ

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Nguyễn Thị Nguyệt Ánh:

Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:

Áp dụng BĐT Cô-si:

$x+y+z\geq 3\sqrt[3]{xyz}$

$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$

Nhân theo vế:

$(x+y+z)(xy+yz+xz)\geq 9xyz$

$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

1 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)

6 tháng 4 2019

a) \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\Leftrightarrow\frac{2+x^2+y^2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(2+x^2+y^2\right)\left(1+xy\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow2+2xy+x^2+x^3y+y^2+y^3x\ge2\left(x^2+y^2+x^2y^2+1\right)\)

\(\Leftrightarrow x^3y+xy^3+2xy-x^2-y^2-2x^2y^2\ge0\)

\(\Leftrightarrow xy\left(x^2-2xy+y^2\right)-\left(x^2-2xy+y^2\right)\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (đúng)

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

17 tháng 5 2017

Bất đẳng thứ côsi hả bạn

17 tháng 5 2017

Mình sửa lại đề nhé:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Dễ dàng chứng minh được: \(x^2+1\ge2x\Leftrightarrow\frac{x}{x^2+1}\le\frac{x}{2x}=\frac{1}{2}\)

Tương tự, ta cũng có: \(\frac{y}{y^2+1}\le\frac{1}{2};\frac{z}{z^2+1}\le\frac{1}{2}\)

Cộng từng vế của 3 BĐT trên ta được ĐPCM.

Ta chứng minh BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

BĐT này đúng với \(\frac{a}{b}+\frac{b}{a}\ge2\)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), ta được:

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}\ge\frac{3}{2}\)