Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt[3]{x+3y}}\ge\frac{1}{\frac{x+3y+1+1}{3}}=\frac{3}{x+3y+2}\\ \text{Tương tự }\Rightarrow P\ge\frac{3}{x+3y+2}+\frac{3}{y+3z+2}+\frac{3}{z+3x+2}\\ \ge3\cdot\frac{9}{x+3y+2+y+3z+2+z+3x+2}\\ =3\)
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)(với a,b,c > 0 )
\(\Leftrightarrow a^3+b^3+c^3\ge3abc\Leftrightarrow abc\le\frac{a^3+b^3+c^3}{3}\).
AD CT trên ta có :
\(1.1.\sqrt[3]{x+3y}\le\frac{1+1+x+3y}{3}\Leftrightarrow\sqrt[3]{x+3y}\le\frac{x+3y+2}{3}\).
Cmtt có : \(\sqrt[3]{y+3z}\le\frac{y+3z+2}{3};\sqrt[3]{z+3x}\le\frac{z+3x+2}{3}\)
\(\Rightarrow\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\le\frac{4\left(x+y+z\right)+6}{3}=3\)
AD BĐT Cộng mẫu số ta có:
\(\frac{1}{\sqrt[3]{x+3y}}+\frac{1}{\sqrt[3]{y+3z}}+\frac{1}{\sqrt[3]{z+3x}}\ge\frac{\left(1+1+1\right)^2}{\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}}\ge\frac{9}{3}=3\)Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=\frac{1}{4}\)
Vậy GTNN của b.thức là P = 3 khi a = b = c =\(\frac{1}{4}\)
\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Áp dụng BĐT AM - GM:
\(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2\left(1-x^2\right)}}\ge2x^3\)
Tương tự ta CM được:
\(\frac{y^2}{\sqrt{1-y^2}}=\frac{y^3}{\sqrt{y^2\left(1-y^2\right)}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}=\frac{z^3}{\sqrt{z^2\left(1-z^2\right)}}\ge2z^3\)
Cộng vế với vế 3 bất đẳng thức trên, ta được:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)
bạn xem lại đề xem, mình làm thấy dấu ''='' không xảy ra
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{2x^3}{2x\sqrt{1-x^2}}\ge\frac{2x^3}{x^2+1-x^2}=2x^3\)
Tương tự: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế với vế:
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
Dấu "=" ko xảy ra nên BĐT sai, vế trái lớn hơn vế phải 1 cách tuyệt đối.
BĐT đúng là: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)
Cộng theo từng vế
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)
Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số :
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)
=> \(x+y+z\ge1\)
Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = y = z =1/3
Vậy min A = 1/2 <=> x = y = z = 1/3
Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c=3\)
\(M=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\)
\(M\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(M\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(M\ge\sqrt{2\sqrt{\frac{81\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}}=3\sqrt{2}\)
\(M_{min}=3\sqrt{2}\) khi \(a=b=c=1\)