Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\left[\left(x+z\right)-\left(y+z\right)\right]^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\ge4\)
\(\Leftrightarrow\dfrac{1}{\left(x+z\right)^2+\left(y+z\right)^2-2}+\dfrac{\left(x+z\right)^2+\left(y+z\right)^2-2}{1}\ge2\)
(AM-GM)
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)
1 + y2 = xy + yz + xz + y2 = (x + y)(y + z)
1 + z2 = xy + yz + xz + z2 = (x + z)(z + y)
1 + x2 = xy + yz + xz + x2 = (y + x)(x + z)
Sau khi thay vào và rút gọn ta được
S = x(y + z) + y(x + z) + z(x + y)
S = 2(xy + yz + xz) = 2.1 = 2
\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
=>\(8xyz=xyz+\sum x+\sum xy+1\)
=>\(\sum x^2+14xyz=\left(\sum x\right)^2+2\sum x+2\)
mặt khác
\(8=\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge\dfrac{8}{\sqrt[3]{xyz}}\rightarrow xyz\ge1\)
đặt \(\sum x=a\left(a\ge3\right)\)
khi đó \(P=\dfrac{a^2+2a+2}{4a^2+15xyz}\le\dfrac{a^2+2a+2}{4a^2+15}\)
\(\dfrac{a^2+2a+2}{4a^2+15}=\dfrac{1}{3}-\dfrac{\left(a-3\right)^2}{12a^2+45}\le\dfrac{1}{3}\)
vậy max bằng 1/3 khi x=y=z=1
Ta có
\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=1+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xyz}\)
áp dụng bất đẳng thức CS ta có
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}=9\) ;
\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{9}{xy+yz+xz}\)
ta có đánh giá : \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)
\(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{27}\Rightarrow\dfrac{1}{xyz}\ge27\)
\(\Rightarrow1+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xyz}\ge1+9+27+27=64\)
\(\Rightarrowđpcm\)