Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)\(=x^2+2xy+y^2+2zx+2zy+z^2=x^2+y^2+z^2+2xy+2yz+2zx\)(đpcm)
b, \(\left(x+y+z\right)^3=\left(\left(x+y\right)+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+z\left(x+y+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)
\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)
\(=\frac{1+x+xy}{1+x+xy}=1\)
Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)
a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)
Biến đổi vế phải thì ta phải suy ra điều phải chứng minh
b, Ta có: \(a+b+c=0\)thì
\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)
( Vì \(a+b+c=0\)nên \(a+b=-c\))
Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
\(=xyz.\frac{3}{xyz}=3\)
bài 1 ta có x+y+z=0 suy ra y+z=-x
(-x)2=x2=(y+z)2=y2+2yz+z2
suy ra
\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)
tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)
bài 2 bạn ghi đề không rõ ràng nên mình không giải
Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)
các bạn giúp mính nhé