\(P=\frac{y+z-x}{3x+y-z}+\frac{z+x-y}{3y+z-x}+\frac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))

Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)

Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)

và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng từng vế của các BĐT trên,ta được:

\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

26 tháng 12 2019

We have:

\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)

Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)

Consider:

\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)

\(\Rightarrow a+b+c\le\frac{3}{2}\)

Now we need to prove:

\(\Sigma_{cyc}\frac{a}{a+1}\le1\)

\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)

\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)

Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)

9 tháng 1 2019

Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)

\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)

Áp dụng nhiều lần bđt trên ta được

\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)

\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)

\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)

\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)

C/m tương tự cho các bđt còn lại

\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)

\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)

Cộng vế theo vế được

\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)

Dấu "=" xảy ra

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)

\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)

Vậy ..........

10 tháng 1 2019

cách khác :)) 

\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)

\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)

\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)

\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

17 tháng 10 2020

Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)

Dấu bằng xảy ra khi \(x=y=z=2\)

17 tháng 10 2020

Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\)\(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)

Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)

Đẳng thức xảy ra khi x = y = z = 2

28 tháng 1 2017

\(I\)\(Don't\)\(know\)

30 tháng 1 2017

Áp dụng BĐT Cauchy-Schwarz ta có: VT\le \sqrt{3\sum \frac{x}{z+3x}}

Ta cần chứng minh \sum \frac{x}{z+3x} \leq \frac{3}{4}

\leftrightarrow \sum \frac{3x}{z+3x} \leq \frac{9}{4}

\leftrightarrow \sum(1-\frac{3x}{z+3x}) \geq \frac{3}{4}

\leftrightarrow \sum \frac{z}{z+3x} \geq \frac{3}{4}

Áp dụng BĐT Cauchy-Schwarz ta có: 

\sum \frac{z}{z+3x}=\sum \frac{z^2}{z^2+3xz} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+3(xy+yz+zx)}=\frac{(x+y+z)^2}{(x+y+z)^2+xy+yz+zx} \geq \frac{(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=\frac{3}{4}

Dấu "=" xảy ra khi x=y=z

P/s:OLM chặn paste r` mà có vài công thức OLM ko có nên mk ko paste dc đành gõ = latex thông cảm, trách thì trách OLM, ko hiểu dc thì bảo Ad dịch hộ


 

đặt \(NTCT=\frac{y}{x+3y}+\frac{z}{y+3z}+\frac{x}{z+3x}\)

\(\Rightarrow3NTCT=\frac{3y}{x+3y}+\frac{3z}{y+3z}+\frac{3x}{z+3x}\)

\(=3-\left(\frac{x}{x+3y}+\frac{y}{y+3z}+\frac{z}{z+3x}\right)=3-\left(\frac{x^2}{x^2+3xy}+\frac{y^2}{y^2+3yz}+\frac{z^2}{z^2+3zx}\right)\)

lại có:

\(\frac{x^2}{x^2+3xy}+\frac{y^2}{y^2+3yz}+\frac{z^2}{z^2+3zx}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{1}{3}\left(x+y+z\right)^2}\)

\(=\frac{3}{4}\)

\(\Rightarrow3NTCT\le3-\frac{3}{4}=\frac{9}{4}\Rightarrow NTCT\le\frac{3}{4}\left(Q.E.D\right)\)

dấu = xảy ra khi x=y=z

20 tháng 9 2017

Vũ Thu Mai bn tham khảo nhé. Tham khảo thôi nha:

 áp dụng cosi 3 số ko âm: 
1.1.³√(x+3y) ≤ (1+1+x+3y)\3 
1.1 ³√(y+3z) ≤ (1+1+y+3z)\3 
1.1.³√(z+3x) ≤ (1+1+z+3x)\3 
cộng vế vế ta đc 
=> ³√(x+3y) + ³√(y+3z) + ³√(z+3x) ≤ (6+4(x+y+z))\3 
=> ³√(x+3y) + ³√(y+3z) + ³√(z+3x) ≤ (6+3)\3 = 3 
dấu = xảy ra khi: 
1 = ³√(x+3y) = ³√(y+3z) = ³√(z+3x) 
=> x=y=z=1/4

6 tháng 8 2020

Do x+y+z=3 nên: \(3x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\)

tương tự và thay vào biểu thức

\(\Rightarrow A=\frac{x}{x+\sqrt{\left(x+z\right)\left(x+y\right)}}+\frac{y}{y+\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bđt Bunyakovsky:

\(A\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{xz}+\sqrt{yz}}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

19 tháng 10 2016

Áp dụng cauchy 3 số             \(\sqrt[3]{x+3y}\)=1.1.\(\sqrt[3]{x+3y}\)\(\le\)\(\frac{1+1+x+3y}{3}\)

Tương tự ta có P\(\le\)\(\frac{2+2+2+\left(x+y+z\right)+3\left(x+y+z\right)}{3}\)=\(\frac{6+4\left(x+y+z\right)}{3}\)=\(\frac{6+3}{3}\)=3

    Dấu = xảy ra khi : x=y=z=\(\frac{1}{4}\)

15 tháng 7 2018

co the ma cung hoi

28 tháng 11 2016

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

28 tháng 11 2016

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

28 tháng 1 2018

\(M=\frac{2x+y+z-15}{x}+\frac{x+2y+z-15}{y}+\frac{x+y+2z-15}{z}\)

\(M-3=\frac{x+y+z-15}{x}+\frac{x+y+z-15}{y}+\frac{x+y+z-15}{z}\)

\(M-3=\left(x+y+z-15\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M\ge\left(x+y+z-15\right)\cdot\frac{9}{x+y+z}+3=\frac{3}{4}\)

\("="\Leftrightarrow x=y=z=4\)

26 tháng 1 2018

nhận ra là bài này sai đề :)))