K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Sửa lại đề nha: x+y+z=0

a)

Xét x+y+z=0

(x+y+z)2=02

x2+y2+z2+2xy+2yz+2zx=0

=> x2+y2+z2=-2xy-2yz-2zx

Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)

=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)

Thay x2+y2+z2=-2xy-2yz-2zx vào (1)

=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)

5 tháng 1 2018

b)

Xét x+y+z=0 ba lần:

- Lần 1:x+y+z=0

<=> x+y=0-z

<=>(x+y)2=(0-z)2

<=>x2+2xy+y2=z2

<=>x2+y2-z2=-2xy(1)

-Lần 2: x+y+z=0

<=> y+z=0-x

<=>(y+z)2=(0-x)2

<=>y2+2yz+z2=x2

<=>y2+z2-x2=-2yz(2)

-Lần 3: x+y+z=0

<=>z+x=0-y

<=>(z+x)2=(0-y)2

<=>z2+2zx+x2=y2

<=> z2+x2-y2=-2zx(3)

Thay (1),(2),(3) vào Q, ta có:

=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)

20 tháng 7 2017

1, đa thức đã cho \(\Leftrightarrow\left(2x-y\right)^2-2\left(2x-y\right)\left(x-y\right)+\left(x-y\right)^2=\left[\left(2x-y\right)-\left(x-y\right)\right]^2=\left(2x-y-x+y\right)^2=x^2\)

2, đa thức đã cho \(\Leftrightarrow\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

--- giải chi tiết lắm rồi đó---

20 tháng 7 2017

a, \(\left(2x-y\right)^2+2\left(2x-y\right)\left(y-x\right)+\left(x-y\right)^2\)

\(=4x^2-4xy+y^2+2\left(2xy-2x^2-y^2+xy\right)+x^2-2xy+y^2\)

\(=4x^2-4xy+y^2+4xy-4x^2-2y^2+2xy+x^2-2xy+y^2\)

\(=x^2\)

b, \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left[1+2\left(y-z\right)\right]+y^2-2yz+z^2\)

\(=\left(x-y+z\right)\left(1+2y-2z\right)+y^2-2yz+z^2\)

\(=x+2xy-2xz-y-2y^2+2yz+z+2yz-2z^2+y^2-2yz+z^2\)

\(=x-y+z+2xy-2xz+2yz-y^2-z^2\)

Chúc bạn học tốt!!!

8 tháng 11 2015

a. Ta có:

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)

27 tháng 5 2017

\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)

\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

9 tháng 8 2019

a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)

\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vậy giá trị của A là một số chính phương

9 tháng 4 2017

Áp dụng BĐT cauchy ta có:\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\x^2+z^2\ge2xz\end{matrix}\right.\)

\(P\le\dfrac{1}{4xy+4x+4}+\dfrac{1}{4yz+4y+4}+\dfrac{1}{4xz+4z+4}=\dfrac{1}{4}\left(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+x+1}\right)\)

xét biểu thức \(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{zx+z+1}=\dfrac{1}{xy+x+1}+\dfrac{x}{1+yx+x}+\dfrac{xy}{x+1+xy}=\dfrac{xy+x+1}{xy+x+1}=1\)do đó \(P\le\dfrac{1}{4}\)

dấu = xảy ra khi x=y=z=1

10 tháng 4 2017

Trước tiên ta tính:

\(\dfrac{1}{x+xy+1}+\dfrac{1}{y+yz+1}+\dfrac{1}{z+zx+1}\)

Đặt: \(\left\{{}\begin{matrix}x=\dfrac{a}{b}\\y=\dfrac{b}{c}\\z=\dfrac{c}{a}\end{matrix}\right.\left(a,b,c\ne0\right)\)

Thì ta có: \(\dfrac{1}{\dfrac{a}{b}+\dfrac{a}{b}.\dfrac{b}{c}+1}+\dfrac{1}{\dfrac{b}{c}+\dfrac{b}{c}.\dfrac{c}{a}+1}+\dfrac{1}{\dfrac{c}{a}+\dfrac{c}{a}.\dfrac{a}{b}+1}\)

\(=\dfrac{bc}{ab+ac+bc}+\dfrac{ca}{ab+bc+ca}+\dfrac{ab}{ab+bc+ca}=1\)

Quay về bài toán ban đầu. Ta có:

\(P=\dfrac{1}{\left(x+2\right)^2+y^2+2xy}+\dfrac{1}{\left(y+2\right)^2+z^2+2yz}+\dfrac{1}{\left(z+2\right)^2+x^2+2xz}\)

\(=\dfrac{1}{x^2+4x+4+y^2+2xy}+\dfrac{1}{y^2+4y+4+z^2+2yz}+\dfrac{1}{z^2+4z+4+z^2+2xz}\)

\(=\dfrac{1}{\left(x-y\right)^2+4x+4xy+4}+\dfrac{1}{\left(y-z\right)^2+4y+4yz+4}+\dfrac{1}{\left(z-x\right)^2+4z+4zx+4}\)

\(\le\dfrac{1}{4x+4xy+4}+\dfrac{1}{4y+4yz+4}+\dfrac{1}{4z+4zx+4}\)

\(=\dfrac{1}{4}.\left(\dfrac{1}{x+xy+1}+\dfrac{1}{y+yz+1}+\dfrac{1}{z+zx+1}\right)=\dfrac{1}{4}\)

19 tháng 7 2017

1) \(\left(x-y-z\right)^2-\left(y+z\right)^2=\left(x\right).\left(x-2y-2z\right)=x^2-2yx-2zx\) 2) \(\left(2x+y\right)^2-4x\left(2x+y\right)+4x^2\Leftrightarrow\left(2x+y\right)\left(2x+y-4x\right)+4x^2\)

\(=\left(2x+y\right)\left(y-2x\right)+4x^2=\left(y^2-4x^2\right)+4x^2=y^2-4x^2+4x^2=y^2\)

3) \(\left(x+y\right)^2-2\left(x^2-y^2\right)+\left(x-y\right)^2\)

\(=x^2+2xy+y^2-2x^2+2y^2+x^2-2xy+y^2\)

\(=4y^2=\left(2y\right)^2\)