\(\frac{2018}{x^3+y^3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Sử dụng bất đẳng thức: 

\(x^3+y^3\ge3xy\left(x+y\right)\)

Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)

\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)

Vậy Max M=2018 khi x=y=z=1

5 tháng 5 2019

Sửa lại \(x^3+y^3\ge xy\left(x+y\right)\)

Xin lỗi

25 tháng 1 2017

đầu tiên cần c/m x3+y3 >= xy(x+y) (chứng minh=biến đổi tương đương)

 ta có x3+y3+1 >= xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)

=>1/(x3+y3+1) <= 1/xy(x+y+z)

tương tự với 2 phân thức còn lại rồi cộng lại

27 tháng 1 2017

Cộng lại chưa cái gì cả

13 tháng 5 2018

Bài 1:

a) xét tg ABE và tg ACF có:

AEB = AFC = 90 độ

BAE = CÀ( A chung )

=> tg ABE = tg ACF ( g.g)

=> AF/AB = AE/AC

=> AE*AC = AF*AB

Đặt \(^{\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\Rightarrow abc=1}\)

\(\Rightarrow P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

ÁP DỤNG BĐT AM-GM : 

\(a^2+b^2\ge2ab\)

\(b^2+1\ge2b\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}\)

Tương tự \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1}\)

               \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

Cộng từng vế các bđt trên ta được

\(P\le\frac{1}{2}\)

Dấu "=" xảy ra khi x=y=z=1

14 tháng 12 2018

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn