Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x+y+z=0
=> x2+y2+z2=-2(xy+yz+xz)
=>(x2+y2+z2)2=[-2(xy+yz+xz)]2
<=> x4+y4+z4+2x2y2+2y2z2+2x2z2=4x2y2+4y2z2+4x2z2
=> x4+y4+z4=2(x2y2+y2z2+x2z2)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Ta có:
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\left(x^2+y^2\right)xy\)
Đặt vế trái của BĐT cần chứng minh là P, áp dụng bồ đề vừa chứng minh ta có:
\(P\le\dfrac{a.abc}{bc\left(b^2+c^2\right)+a.abc}+\dfrac{b.abc}{ca\left(c^2+a^2\right)+b.abc}+\dfrac{c.abc}{ab\left(a^2+b^2\right)+c.abc}\)
\(P\le\dfrac{a^2.bc}{bc\left(a^2+b^2+c^2\right)}+\dfrac{b^2.ac}{ca\left(a^2+b^2+c^2\right)}+\dfrac{c^2.ab}{ab\left(a^2+b^2+c^2\right)}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2-2a^2c^2-2b^2c^2=4a^2b^2\)
\(\Leftrightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=\left(a^2+b^2+c^2\right)^2\)
PS: Lỡ tay ghi a, b, c rồi nên dùng a, b, c luôn nha.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=2.0=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
<=> x - y = 0
y - z = 0
z - x =0
<=> x=y
y=z
z=x
<=> x=y=z
1)VD:\(X=Y=Z\Leftrightarrow XY+YZ+ZX=X^2+Y^2+Z^2\)
\(\Leftrightarrow X^2+Y^2+Z^2=XY+YZ+ZX\left(1\right)\)
VD:\(X^2+Y^2+Z^2=XY+YZ+ZX\Leftrightarrow2X^2+2Y^2+2Z^2=2XY+2YZ+2ZX\)
\(\Leftrightarrow2X^2+2Y^2+2Z^2-2XY-2YZ-2ZX=0\)
\(\Leftrightarrow\left(X-Y\right)^2+\left(Y-Z\right)^2+\left(Z-X\right)^2=0\left(HĐT\right)\)
\(\Rightarrow X=Y=Z\left(2\right)\)
\(1\&2\Rightarrow X^2+Y^2+Z^2=XY+YZ+ZX\)
\(\Leftrightarrow X=Y=Z\)
2)\(\Rightarrow A+B+C\Rightarrow X=-\left(Y+Z\right)\Rightarrow X^2=\left(Y+Z\right)^2\)
\(\Leftrightarrow X^2=Y^2+2YZ+Z^2\)
\(\Leftrightarrow X^2-Y^2-Z^2=2YZ\)
\(\Leftrightarrow\left(X^2-Y^2-Z^2\right)^2=4Y^2Z^2\)
\(\Leftrightarrow X^4+Y^4+Z^4=2X^2Y^2+2Y^2Z^2+2Z^2X^2\)
\(\Leftrightarrow2\left(X^4+Y^4+Z^2\right)=\left(X^2+Y^2+Z^2\right)^2=A^4\)
\(\Rightarrow X^4+Y^4+Z^4=\frac{A^4}{2}\)
Bạn xem ở http://diendan.hocmai.vn/showthread.php?t=272675