K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

T nghĩ đề thế này chứ nhỉ ???

\(x\left(x+y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+3xy\right)\left(x^2+3xy+2y^2\right)+y^4\)

Đặt \(x^2+3xy+y^2=t\) Khi đó:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4\)

\(=t^2=\left(x^2+3xy+y^2\right)^2\) là số chính phương

11 tháng 10 2019

Sửa đề:)), 

\(A=x\left(x+y\right)\left(x+2y\right)\left(x+3y\right)-y^4\)

\(=x\left(x+3y\right)\left(x+y\right)\left(x+2y\right)-y^4\)

\(=\left(x^2+3xy\right)\left(x^2+3xy+2y^2\right)+y^4\)(1)

Đặt \(x^2+3xy=t\)

\(\Rightarrow\left(1\right)=t\left(t+2y^2\right)+y^4=\left(t+y^2\right)^2\)(2)

Mà \(x^2+3xy=t\)nên \(\left(2\right)=\left(x^2+3xy+y^2\right)^2\)(là scp)

a: \(B=x\left(x+y\right)\left(x-y\right)\left(x+2y\right)+y^4\)

\(=\left(x^2+xy\right)\left(x^2+2xy-xy-2y^2\right)+y^4\)

\(=\left(x^2+xy\right)\left(x^2+xy-2y^2\right)+y^4\)

\(=\left(x^2+xy\right)^2-2y^2\left(x^2+xy\right)+y^4\)

\(=\left(x^2+xy-y^2\right)^2\)

b: \(C=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)

\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)

\(=\left(x^2-5xy\right)^2+10y^2\left(x^2-5xy\right)+25y^4\)

\(=\left(x^2-5xy+5y^2\right)^2\)

15 tháng 8 2020

đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)

do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương

\(\Leftrightarrow-2\left(x-y\right)=0\)

\(\Leftrightarrow x=y\)

30 tháng 10 2015

=[(x+1)(x+6)][(x+3)(x+4)]+9

Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương 

2 tháng 1 2017

Bạn ngonhuminh, chứng minh chỗ (1) sai rồi nhé.

Khi gọi \(d=gcd\left(x-y,2\left(x+y\right)+1\right)\) thì lúc này chưa có \(d=1\).

Vậy \(y^2⋮d\) không suy ra được \(y⋮d\) đâu nha bạn.

Tuy nhiên lời giải có thể sửa lại dễ dàng như sau:

Giả sử \(x-y\) và \(2\left(x+y\right)+1\) không nguyên tố cùng nhau, tức là sẽ có ước NGUYÊN TỐ chung lớn nhất.

Gọi số đó là \(p\). Lúc này \(y^2⋮p\Rightarrow y⋮p\). CM tương tự của bạn suy ra \(p=1\) (vô lí).

Vậy \(x-y\) và \(2\left(x+y\right)+1\) nguyên tố cùng nhau.

2 tháng 1 2017

\(2x^2+x=3y^2+y\Leftrightarrow\orbr{\begin{cases}\left(x-y\right)\left\{2\left(x+y\right)+1\right\}=y^2\left(1\right)\\\left(x-y\right)\left\{3\left(x+y\right)+1\right\}=x^2\left(2\right)\end{cases}}\)

Vế trái là số Cp=> VP cũng phải là số CP

Trước hết Ta c/m hai thừa số VT  là nguyên tố cùng nhau

(1) g/s d là ước lớn nhất của (x-y) và 2(x+y)+1 => y cũng phải chia hết d

\(2\left(x+y\right)+1-2\left(x-y\right)=3y+1\Rightarrow d=1\)

(2)g/s d là ước lớn nhất của (x-y) và 3(x+y)+1 => x cũng phải chia hết d

\(3\left(x+y\right)+1+3\left(x-y\right)=6x+1\Rightarrow d=1\)

=>VT là số Cp xẩy hai trường hợp

TH1: cả ba  thừa số đó bằng nhau 

\(\left(x-y\right)=2\left(x+y\right)+1=3\left(x+y\right)+1\)Nghiệm duy nhất x=y=0  => x-y=0; 2(x+y)+1=3(x+y)+1=1 đều là số Cp 

TH2: Cả hai thừa số VT là số Cp (**)

(*) (**) Hiển nhiên đúng=> dpcm 

16 tháng 8 2016

Ta có \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

            \(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y\in Z\) nên \(x^2\in Z,\)\(5xy\in Z,\)\(5y^2\in Z\)\(\Rightarrow\)\(x^2+5xy+5y^2\in Z\)

Vậy A là số chính phương.

2 tháng 12 2019

sao may ko ket ban

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp