Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2y\ge xy+4\ge2\sqrt{4xy}=4\sqrt{xy}\)
\(\Rightarrow y^2\ge4xy\Rightarrow\dfrac{y}{x}\ge4\)
\(P=\dfrac{xy}{x^2+2y^2}=\dfrac{1}{\dfrac{x}{y}+\dfrac{2y}{x}}=\dfrac{1}{\dfrac{1}{16}\left(\dfrac{16x}{y}+\dfrac{y}{x}\right)+\dfrac{31}{16}.\dfrac{y}{x}}\)
\(\Rightarrow P\le\dfrac{1}{\dfrac{1}{16}.2\sqrt{\dfrac{16xy}{xy}}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;4\right)\)
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=x^4+2x^2y^2-3x^2+y^4-4y^2+4\)
\(=\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3+x^2\)
\(\Rightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3=-x^2\le0\)
Do đó \(A^2-4A+3\le0\Leftrightarrow\left(A-1\right)\left(A-3\right)\le0\Leftrightarrow1\le A\le3\)
min A =1 \(\Leftrightarrow x=0,\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
max A = 3 <=> x = 0 , \(\orbr{\begin{cases}y=\sqrt{3}\\y=-\sqrt{3}\end{cases}}\)
\(x=P+2y-3\)
\(\Rightarrow\left(P+2y-3\right)^2+\left(P+2y-3\right).y+2y^2-1=0\)
Khai triển ra và áp dụng điều kiện có nghiệm của pt bậc 2 ẩn y
@Nguyễn Việt Lâm