\(x^2+2y^2+2xy-2x-6y+5=0\)

Tính giá trị biểu thức:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

\(x^2+2y^2+2xy-2x-6y+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(2x+2y\right)+1+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-2\right)^2=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x+y-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Khi đó \(P=\dfrac{\left(-1\right)^2-7\cdot\left(-1\right)\cdot2+51}{-1-2}=-22\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

a)

\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)

c)

\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)

d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)

f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)

g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)

\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)

9 tháng 1 2016

hikkkkkkkk làm sắp xong bấm lộn nút mất tiêu

9 tháng 1 2016

x2+5y2-2xy+2y+2x+2=0

<=>(x2-2xy+y2)+(2x-2y)+1+(4y2+4y+1)=0

<=>(x-y)2+2.(x-y)+1+(2y+1)2=0

<=>(x-y+1)2+(2y+1)2=0

<=>x-y=-1 và y=-1/2

<=>x=-1-1/2=-3/2 và y=-1/2

Vậy: \(H=\frac{x^2-7xy+52}{x-y}=\frac{x^2-xy-6xy+52}{-1}=-\left[x^2-6xy+52\right]\)

còn lại bạn chỉ cần thay vào tính thui nha

 

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

8 tháng 12 2019

\(5x^2+5y^2+8xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)

\(\Rightarrow x=-1;y=1\)

Khi đó:

\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)

\(=1\)