\(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=3\).

Tín...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Nhân liên hợp :v

\(\left(x+\sqrt{3+x^2}\right)\left(x-\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\)

\(\Leftrightarrow-3\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\)

\(\Leftrightarrow x+y=\sqrt{3+x^2}-\sqrt{3+y^2}\)                        (1)

Tương tự:\(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)\left(y-\sqrt{3+y^2}\right)=3\left(y-\sqrt{3+y^2}\right)\)

\(\Leftrightarrow-3\left(x+\sqrt{3+x^2}\right)=3\left(y-\sqrt{3+y^2}\right)\)

\(\Leftrightarrow x+y=\sqrt{3+y^2}-\sqrt{3+x^2}\)                         (2)

Cộng (1) và (2)\(\Rightarrow2x+2y=0\Rightarrow x+y=0\)

24 tháng 10 2017

\(\)\(\left(\sqrt{x^2+3}+x\right)\left(\sqrt{x^2+3}-x\right)=3=\left(\sqrt{x^2+3}+x\right)\left(\sqrt{y^2+3}+y\right)\)

\(\Rightarrow\sqrt{x^2+3}-x=\sqrt{y^2+3}+y\)(1)

ttu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\) (2)

lay (1)+(2)

\(-\left(x+y\right)=x+y\Rightarrow x+y=0\)

ma \(A=x^{2013}+y^{2013}+1=\left(x+y\right)M+1=1\)

24 tháng 10 2017

???????????

30 tháng 8 2019

E hổng biết cách này có đúng ko nữa:((

5

Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)

\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )

Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7

22 tháng 6 2016

nhận liên hợp ta có  \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)

==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)

tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)

trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y

đến đây ok rùi nhé bạn 

10 tháng 8 2016

bài đó nhân liên hợp là ra

27 tháng 9 2017

Bạn tham khảo cách làm của bạn Thắng Nguyễn ở đây nhé

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath

4 tháng 1 2019

Ta có:

\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)

\(=xy=VP\)

Dấu =  xảy ra khi \(x=y=18\)

\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)

20 tháng 9 2019

Ta có:

VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)​+9y(xy−9y)​≤29x+xy−9x​+29y+xy−9y

=xy=VP=xy=VP

Dấu =  xảy ra khi x=y=18x=y=18

\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0

7 tháng 9 2017

\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

                  =\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

                 \(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)

ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

           =\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

          =\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)