Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)
\(=xy=VP\)
Dấu = xảy ra khi \(x=y=18\)
\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)
Ta có:
VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)+9y(xy−9y)≤29x+xy−9x+29y+xy−9y
=xy=VP=xy=VP
Dấu = xảy ra khi x=y=18x=y=18
\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0
Câu hỏi của Vịtt Tên Hiền - Toán lớp 9 | Học trực tuyến
tham khảo thử xem
Ta có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(x-\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-\left(x+2018\right)^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2108\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-2018\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-\left(y+\sqrt{y^2+2018}\right)=x-\sqrt{x^2+2018}\)
\(\Leftrightarrow-y-\sqrt{y^2+2018}=x-\sqrt{x^2+2018}\) (1)
Và có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)\left(y-\sqrt{y^2+2018}\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2018}\right)\left(y^2-y^2-2018\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow-2018\left(x-\sqrt{x^2+2018}\right)=2018\left(y-\left(\sqrt{y^2+2018}\right)\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2018}=y-\sqrt{y^2+2018}\) (2)
Lấy (1) + (2) vế + vế ta được:
\(\left(-y-\sqrt{y^2+2018}\right)+\left(-x-\sqrt{x^2+2018}\right)=\left(x-\sqrt{x^2+2018}\right)+\left(y-\sqrt{y^2+2018}\right)\)
<=>\(-y-\sqrt{y^2+2018}+-x-\sqrt{x^2+2018}=x-\sqrt{x^2+2018}+y-\sqrt{y^2+2018}\)
<=> -y - x = x + y
<=> 2y - 2x =0
<=> -2(x+y)=0
<=> x + y =0
vậy x+y=0
cộng điểm cho mk nha!!!!!!!!!!
=0 bạn
thank nhé, chứng minh x+y=0 ra phải không?