Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mai Thị Thanh xuân
trong câu hỏi tương tự có ông nào giải rồi ấy
may thay ổng không phải người Nam :v
tưởng dân Nam Định nó thi cái này mấy hôm trước rồi mà sao giờ còn đăng zị
Lời giải:
ĐK: $x,y\geq 9$
Áp dụng BĐT Bunhiacopxky và AM-GM ta có:
\(\text{VT}^2=9(x\sqrt{y-9}+y\sqrt{x-9})^2\leq 9(x+y)[x(y-9)+y(x-9)]\)
\(=(9x+9y)(2xy-9x-9y)\leq \left(\frac{9x+9y+2xy-9x-9y}{2}\right)^2=(xy)^2\)
Hay $\text{VT}^2\leq \text{VP}^2$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \sqrt{y-9}=\sqrt{x-9}\\ 9x+9y=2xy-9x-9y\end{matrix}\right.\) hay $x=y=18$
Khi đó:
\(S=(x-17)^{2018}+(y-19)^{2019}=1^{2018}+(-1)^{2019}=0\)
\(3\left(x\sqrt{y-9}+y\sqrt{x-9}\right)=xy\Leftrightarrow\dfrac{3x\sqrt{y-9}+3y\sqrt{x-9}}{xy}=1\)
\(\Leftrightarrow\dfrac{3\sqrt{x-9}}{x}+\dfrac{3\sqrt{y-9}}{y}=1\)
Áp dụng BĐT \(a.b\le\dfrac{a^2+b^2}{2}\) ta có:
\(\dfrac{3\sqrt{x-9}}{x}+\dfrac{3\sqrt{y-9}}{y}\le\dfrac{3^2+x-9}{2x}+\dfrac{3^2+y-9}{2y}=\dfrac{1}{2}+\dfrac{1}{2}=1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-9}=3\\\sqrt{y-9}=3\end{matrix}\right.\) \(\Rightarrow x=y=18\)
Thay vào P ta được:
\(P=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1^{2018}+\left(-1\right)^{2019}=1-1=0\)
Ta có:
\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)
\(=xy=VP\)
Dấu = xảy ra khi \(x=y=18\)
\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)
Ta có:
VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)+9y(xy−9y)≤29x+xy−9x+29y+xy−9y
=xy=VP=xy=VP
Dấu = xảy ra khi x=y=18x=y=18
\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0