K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Theo câu a ta có: |x - y| + |y| ≥ |x – y + y| = |x| ⇒ |x - y| ≥ |x| - |y|.

4 tháng 11 2015

bình phương 2 vế rồi c/m tương đương nha bạn

4 tháng 11 2015

với mọi x,y thuộc Q,ta luôn luôn có:

x<|x| và -x<|x|;    y<|y| và -y<|y|

=>x+y<|x|+|y| và -x-y<|x|+|y|

=>x+y>-(|x|+|y|)

=>-(|x|+|y|)<x+y<|x|+|y|

=>|x+y|<|x|+|y| (đpcm)

dấu "=" xảy ra <=>xy>0

31 tháng 5 2017

a, Vì hai vế đều ko âm nên ta đuợc :

\(\left|x+y\right|^2\)<=\(\left(\left|x\right|^2+\left|y\right|^2\right)\)

<=> (x+y)(x+y) <= \(\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)

<=> \(x^2+2xy+y^2\) <= \(x^2+2\left|x\right|\left|y\right|+y^2\)

<=> xy <= |xy| ( Luôn đúng với mọi x và y )

Vậy BĐT trên đúng. Dấu ' = ' xảy ra khi x, y cùng dấu

b, Áp dụng từ câu a , bạn suy ra nhé !

31 tháng 5 2017

a) cả 2 vế không âm nên bình phương 2 vế ta được :

\(\left|x+y\right|^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right).\left(\left|x\right|+\left|y\right|\right)\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+2.\left|x\right|\left|y\right|+y^2\)

\(\Leftrightarrow xy\le\left|xy\right|\) Điều này luôn đúng với mọi số x ; y .

Vậy bất đẳng thức đã cho đúng . Dầu " ="khí | xý | = xy <=> x ; y cùng dấu .

b) Áp dụng câu a) ta có : | x - y| + |y| \(\ge\) | (x-y) + y | = |x|

=> |x - y | \(\ge\)|x| + | y|

Đầu " = " xảy ra <=> (x-y) và y cùng dấu

14 tháng 6 2017

a) Với mọi \(x,y\in Q\), ta luôn luôn có:

\(x\le\left|x\right|\)\(-x\le\left|x\right|\) ; \(y\le\left|y\right|\)\(-y\le\left|y\right|\)

Suy ra \(x+y\le\left|x\right|+\left|y\right|\)\(-x-y\le\left|x\right|+\left|y\right|\)

hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

b) Theo câu a ta có:

\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

26 tháng 10 2016

a) |x| + |y| \(\ge\) |x+y|

Với mọi x,y : |x| \(\ge\) x ( Dấu "=" xảy ra khi x \(\ge\) 0 )

|y| \(\ge\) y ( Dấu "=" xảy ra khi y \(\ge\) 0 )

=> |x| + |y| \(\ge\) x+y (1)

Với mọi x,y : |x| > x ( Dấu "=" xảy ra khi x \(\le\) 0 )

|y| > y ( Dấu "=" xảy ra khi y \(\le\) 0 )

=> |x| + |y| = -(x+y) (2)

Từ (1) và (2) => |x| + |y| \(\ge\) |x+y|

31 tháng 8 2016

giúp m vs

20 tháng 8 2015

bạn bấm vào đây !Cho x, y $\in$∈ Q. Chứng tỏ rằng:        a/ | x + y | $\le$≤ | x | + | y |              b/ | x - y | $\ge$≥ | x | - | y | 

20 tháng 8 2015

                                                

14 tháng 12 2019

Với mọi \(x,y\in Q\) ta có:

\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)

\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)

Dấu '' = '' xảy ra khi \(xy\ge0.\)

Chúc bạn học tốt!

20 tháng 8 2015

(+)  l x l lớn hơn l yl 

=> lx - y l = lxl - l y l  (1)

(+) Với lxl < lyl => lxl - lyl < 0  

mà l x- y l lớn hơn bằng 0 ( GTTĐ luôn dương )

 =>  lx-yl > lx l- l y l  (2) 

Từ(1) và (2) 

=> lx - y l lớn hớn bằng l x l - l y l 

Dấu bằng xảy ra khi x  = y 

20 tháng 8 2015

http://olm.vn/hoi-dap/question/98108.html

Này nè

4 tháng 11 2015

Bài này mới chuẩn nè :

Với mọi x,y  Q ta luôn có x < |x| và -x < |x| ; y < |y| và -y < |y|

=> x + y < |x| + |y| và -x - y < |x| + |y|

hay x + y > -(|x| + |y|)

Do đó -(|x| + |y|) < x + y < |x| + |y|

Vậy |x + y| < |x| + |y| (dấu = xảy ra <=> xy > 0)