K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(a+1⋮6\Rightarrow a\text{ chia 6 d}5;b+2013⋮6\Rightarrow b\text{ chia 6 }d3\)

\(matkhac:4\equiv4\left(mod6\right)\Rightarrow4.4\equiv4^2\equiv4\left(mod6\right)\Rightarrow4^a\equiv4\left(mod6\right)\Rightarrow a+b+4^a\equiv5+3+4\equiv0\left(mod6\right)\)

svtkvtm em đã học mod rồi ak >> Anh không hiểu cái đấy luôn >> Cô dạy hay tự học đấy >> Nếu tự học thì cho anh xin tài liệu học nữa >>>

6 tháng 2 2016

hai số cần tìm là; 1 và 2

6 tháng 2 2016

cho mik lời giải với bạn. mik đag cần gấp

11 tháng 2 2016

moi hok lop 6 thoi

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)

\(=-3\left(x^2y+y^2z+z^2x\right)+3\left(xy^2+yz^2+zx^2\right)⋮6\)

 

2 tháng 5 2023

Vì chia hết cho 5 

\(\Rightarrow y=0\) hoặc \(y=5\)

\(Th1:y=0\\ \Rightarrow x-0=6\\\Rightarrow x=6\)           \(\Rightarrow x=6;y=0\)

\(Th2:y=5\\ \Rightarrow x-5=6\\ \Rightarrow x=11\)           \(\Rightarrow x=11;y=5\)

\(\Rightarrow A\)

6 tháng 2 2016

-7

ủng hộ mk nha

6 tháng 2 2016

thuộc N bạn ơi

20 tháng 6 2019

Ta có: a, b là các số tự nhiên không chia hết cho 5

=> Chữ số cuối cùng các số a, b  có thể là 1, 2, 3, 4, 6, 7, 8,9

 mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...

=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6

=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6

=> Chữ số tận cùng các số a^4m -1  và b^4m -1 là 0 hoặc 5 

=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)

=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5

20 tháng 6 2019

Hoặc nếu em đã được học kiến thức đồng dư:

a, b là các số không chia hết cho 5

=> a^4 , b^4 có chữ số tận cùng là 1, 6 

=> a^4m, b^4m có chữ số tận cùng 1, 6

=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)