Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (-x+5)(x+3)
b) x2-y2+x2-xy
(x-y)(x+y)+x(x-y)
(x-y)(2x+y)
d) 10x-6x2-5y+3xy
2x(5-3x)-y(5-3x)
(2x-y)(5-3x)
thông cảm câu c hok bít làm câu a bạn nhân ra là bạn thấy
Giả sử đa thức bậc 4 đó là
f(x) = ax4 + bx3 + cx2 + dx + e
=> f(0) = e chia hết cho 7 => e chia hết cho 7
=> f(1) = a + b + c + d + e (1) chia hết cho 7
=> f(-1) = a - b + c - d + e(2) chia hết cho 7
=> f(2) = 16a + 8b + 4c + 2d + e (3) chia hết cho 7
=> f(-2) = 16a - 8b + 4c - 2d + e (4) chia hết cho 7
Lấy (1) + (2) được 2a + 2c + 2e chia hết cho 7 => a + c chia hết cho 7
Lấy (1) - (2) được 2b + 2d chia hết cho 7 => b + d chia hết cho 7
Làm tiếp rồi suy luận ra được ĐPCM
2/ Ta có
2x2 - 6y2 = xy
<=> (2x2 - 4xy) + (- 6y2 + 3xy ) = 0
<=> (x - 2y)(2x + 3y) = 0
Thế giá trị x,y vô là tìm được đáp án nhé
ĐKXĐ : \(x,y\ne0\)\(;\)\(x\ne y\)
\(a)\) \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x-y\right)}+\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}+\frac{xy^2}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\left(\frac{xy\left(x+y\right)+\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x-y\right)}.\frac{x-y}{x^2-xy+y^2}\)
\(P=\frac{2y}{xy}-\frac{x+y}{xy}=\frac{y-x}{xy}\)
\(b)\)
+) Với \(\left|2x-1\right|=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Mà \(x\ne0\) ( ĐKXĐ ) nên \(x=1\)
+) Với \(\left|y+1\right|=\frac{1}{2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y+1=\frac{1}{2}\\y+1=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-3}{2}\end{cases}}}\)
Thay \(x=1;y=\frac{-1}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-1}{2}-1}{1.\frac{-1}{2}}=\frac{\frac{-3}{2}}{\frac{-1}{2}}=3\)
Thay \(x=1;y=\frac{-3}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-3}{2}-1}{1.\frac{-3}{2}}=\frac{\frac{-5}{2}}{\frac{-3}{2}}=\frac{15}{4}\)
Vậy ...