K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2015

\(\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)=4\)

\(x^2+\frac{1}{x^2}\ge2.\sqrt{x^2.\frac{1}{x^2}}=2\)

\(x^2+\frac{y^2}{4}\ge2.\sqrt{x^2.\frac{y^2}{4}}=2.\left|\frac{xy}{2}\right|=\left|xy\right|\)

=> \(4=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\)

=> \(\left|xy\right|\le2\Rightarrow xy\le2\)

Vậy Max (xy) = 2 khi |x| = 1 và |y| = 2.|x| = 2

19 tháng 7 2018

Ta có :\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(x^2+\frac{y^2}{4}-xy\right)+xy=2\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\Leftrightarrow xy\le2\) có GTLN là \(2\)

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=2\)

16 tháng 6 2015

với x,y dương, áp dụng bđt cosi ta có:

 \(x^4+y^2\ge2\sqrt{x^4.y^2}=2x.xy=2x\left(xy=1\right)\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\)

tương tự thì: \(\frac{y}{x^2+y^4}\le\frac{1}{2}\)

=> (gọi là A đi ): \(A\le\frac{1}{2}+\frac{1}{2}=1\Leftrightarrow x=y=1\)

19 tháng 12 2021

Cho \(xy=1\)và \(x,y>0\)

Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)

\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)

\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)

Áp dụng BĐT Cauchy

\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)

Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)

\(=>M\le1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)

Vậy \(M_{max}=1\)khi \(x=y=1\)

Áp dụng bđt AM-GM ta có

\(x^4+y^2\ge2x^2y\)

\(x^2+y^4\ge2xy^2\)

\(\Rightarrow M\le\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy..........

21 tháng 2 2021

Từ giả thiết \(=>x+y=2xy\)

Áp dụng bđt Cô-si ta có : 

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\)

\(y^4+x^2\ge2\sqrt{y^4x^2}=2y^2x\)

Khi đó : \(C\le\frac{1}{2}\left[\frac{1}{xy\left(x+y\right)}+\frac{1}{xy\left(x+y\right)}\right]=\frac{1}{2}.\frac{2}{xy\left(x+y\right)}=\frac{1}{xy\left(x+y\right)}\)

đến đây dễ rồi ha

21 tháng 2 2021

oke làm tiếp 

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>2\ge\frac{4}{x+y}< =>x+y\ge2\)

Mặt khác \(C\le\frac{1}{xy\left(x+y\right)}=\frac{1}{\frac{\left(x+y\right)}{2}.\left(x+y\right)}=\frac{2}{\left(x+y\right)^2}\le\frac{1}{2}\)

Vậy GTLN của C = 1/2 đạt được khi x=y=1

9 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(A\le\frac{x}{2.\sqrt{x^4.y^2}}+\frac{y}{2.\sqrt{x^2y^4}}=\frac{x}{2.x^2y}+\frac{y}{2.x.y^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{2}{2xy}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=y^4\\x^4=y^2\end{cases}\Leftrightarrow x^2.x^4=y^2.y^4\Leftrightarrow x^6=y^6\Leftrightarrow}x=y=1\left(x,y>0\right)\)

Vậy \(A_{max}=1\Leftrightarrow x=y=1\)

10 tháng 12 2018

Không biết bài này cô si ngược được không?

Dự đoán xảy ra cực trị tại x = y = 1

Cho x = 1 hoặc y = 1

Khi đó: \(A=\frac{1}{1+y^2}+\frac{1}{1+x^2}\)

Mà \(\frac{1}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)

Tương tự: \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)

Cộng theo vế hai BĐT: \(A\ge\left(1+1\right)-\left(\frac{x}{2}+\frac{y}{2}\right)\)\(\ge2-\left(\frac{1}{2}+\frac{1}{2}\right)=1\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t