Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+3xy+4y^2\ge4y^2+3y+1\)
\(=\left(4y^2+\frac{2.2y.3}{4}+\frac{9}{16}\right)+\frac{7}{16}\)
\(=\left(2y+\frac{3}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)
Lời giải:
Áp dụng BĐT AM-GM:
$12=x^2+4+4y\geq 2\sqrt{4x^2}+4y=4x+4y=4(x+y)$
$\Rightarrow x+y\leq 3$
Tiếp tục áp dụng BĐT AM-GM:
$P=x+y+\frac{10}{x+y}=(x+y)+\frac{9}{x+y}+\frac{1}{x+y}$
$\geq 2\sqrt{(x+y).\frac{9}{x+y}}+\frac{1}{x+y}$
$=6+\frac{1}{x+y}\geq 6+\frac{1}{3}=\frac{19}{3}$ (do $x+y\leq 3$)
Vậy $P_{\min}=\frac{19}{3}$
Giá trị này đạt tại $x=2; y=1$
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)
\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)
Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??
Ta có:
\(P^2=\left(x+2y\right)^2=x^2+4xy+4y^2\\ =x^2+y^2+4xy+3y^2\ge x^2+y^2=4\\ \Rightarrow P_{min}=2\Leftrightarrow x=2;y=0\)
Đs....
\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)
\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)
\(P_{min}=4\) khi \(x=y=1\)
\(A=\dfrac{7x^2}{16}+\left(\dfrac{9x^2}{16}+3xy+4y^2\right)\)
\(A=\dfrac{7x^2}{16}+\left(\dfrac{3x}{4}+2y\right)^2\ge\dfrac{7x^2}{16}\ge\dfrac{7.1^2}{16}=\dfrac{7}{16}\)
\(A_{min}=\dfrac{7}{16}\) khi \(\left(x;y\right)=\left(1;-\dfrac{3}{8}\right)\)