\(\frac{2+x}{1+x}+\frac{1-2y}{1+2y}>=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

\(\frac{2+x}{1+x}+\frac{1-2y}{1+2y}=\left(\frac{2+x}{1+x}-1\right)+\left(\frac{1-2y}{1+2y}+1\right)\)

\(=\frac{2+x-1-x}{x+1}+\frac{1-2y+1+2y}{1+2y}\)

\(=\frac{1}{x+1}+\frac{2}{1+2y}=\frac{1}{x+1}+\frac{1}{\frac{1}{2}+y}\ge\frac{4}{x+y+\frac{3}{2}}\ge\frac{4}{\frac{7}{2}}=\frac{8}{7}\)

Dấu "=" xảy ra khi \(x=\frac{3}{4};y=\frac{5}{4}\)

20 tháng 6 2020

Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z 

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z 

=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z 

=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)

3 tháng 5 2018

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)