Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxky:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)
\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)
\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)
Áp dụng bất đẳng thức Cô si cho ba số dương ta có
, đẳng thức xảy ra khi và chỉ khi .
Tương tự, . Cộng theo vế hai bất đẳng thức nhận được ta có
Sử dụng giả thiết suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi
Bất đẳng thức cần chứng minh tương đương:
\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).
Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).
Do đó ta chỉ cần chứng minh:
\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).
Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi y = 0; x = z = 1.
\(\text{Ta có:}\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{1-2xy+1}{xy+2}\)
\(=\frac{2-2xy}{2+xy}\)
\(\text{Vì }2-2xy\le2+xy\left(do\text{ x,y không âm}\right)\text{ nên }\frac{2-2xy}{2+xy}\le1\)
\(=>\frac{x}{y+1}+\frac{y}{x+1}\le1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(x^3+y^3)(x+y)\geq (x^2+y^2)^2$
$\Leftrightarrow 2(x+y)\geq (x^2+y^2)^2$
$\Rightarrow 4(x+y)^2\geq (x^2+y^2)^4(1)$
Áp dụng BĐT AM-GM: $2(x^2+y^2)\geq (x+y)^2(2)$
Từ $(1);(2)\Rightarrow 8(x^2+y^2)\geq (x^2+y^2)^4$
$\Rightarrow 8\geq (x^2+y^2)^3$
$\Rightarrow 2\geq x^2+y^2$ (đpcm)