K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Từ giả thiết ta có:

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+2\left(x+y\right).\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+10=-y^2\le10\)

Mà \(\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\le0\)

\(\Rightarrow\left(x+y+\frac{7}{2}\right)^2\le\frac{9}{4}\)

Giải ra ta được \(x+y+1\ge-4\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)

Vậy \(A_{MIN}=-4\) tại \(\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)

8 tháng 4 2017

bạn giải cái bất phương trình sai rồi: Min phải bằng -1, đề kêu 2 số thực x;y dương nên ko có chuyện x= -5 đâu

6 tháng 7 2018

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

6 tháng 7 2018

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)

21 tháng 2 2019

Dự đoán dấu "=" khi x = 2 ; y= 1

Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được

\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)

    \(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)

    \(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)

      \(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)

Dấu "=" khi x = 2 ; y = 1 

21 tháng 2 2019

Bài toán easy!

\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)

Áp dụng BĐT AM-GM,ta có:

\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)

\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)

\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)

\(\ge28+2+3-9=24\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)

Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)

Dấu "=" xảy ra khi x=y=1

Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)

Dấu"=" xảy ra khi x=y=1

\(\Rightarrow2xy\le2.1=2\)

\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)

\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)

Dấu"=" xảy ra khi x=y=1

 

28 tháng 1 2021

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

28 tháng 1 2021

8

555566655

5665656746565656+5965=?

2 tháng 12 2023

Ta có \(x^2+y^2+xy+x=y-1\)

\(\Leftrightarrow2x^2+2y^2+2xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(\Rightarrow B=\left(-1+1-1\right)^{2023}\) \(=\left(-1\right)^{2023}\) \(=-1\)

2 tháng 12 2023

bvbbbvvbvv