Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)
\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)
\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)
Ta có: \(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow B=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)
\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\)
Áp dụng Bđt Cô-si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow B\ge4+2\sqrt{3}\)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)
\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)
\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow-\left(x^2+y^2\right)\le-2\)
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)
\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)
\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)
\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)
Ta có :
\(P=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{3}\)
Vậy GTNN của P là \(4+2\sqrt{3}\) khi = \(\frac{3xy}{x^3+y^3}=\frac{x^3+y^3}{xy}\)và x + y = 1
P/s : tự giải dấu "=" nhé. mình lười ghi
Ta có \(P=\frac{1}{\left(x+y\right)^3-3xy\left(x+y\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1-2xy}{xy\left(1-3xy\right)}\)
Theo Cosi \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Gọi \(P_0\)là một giá trị của P khi đó \(\exists x,y\)để \(P_0=\frac{1-2xy}{xy\left(1-3xy\right)}\Leftrightarrow3P_0\left(xy\right)^2-\left(2+P_0\right)xy+1=0\left(1\right)\)
Để tồn tại x,y thì (1) phải có nghiệm xy \(\Leftrightarrow\Delta=P_0^2-8P_0+4\ge0\Leftrightarrow\orbr{\begin{cases}P_0\ge4+2\sqrt{3}\\P_0\le4-2\sqrt{3}\end{cases}}\)
Để ý rằng với giả thiết bài toán thì B>0. Do đó ta có \(P_0\ge4+2\sqrt{3}\)
Với \(P_0=4+2\sqrt{3}\Rightarrow xy=\frac{2+P_0}{6P_0}=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\Rightarrow x\left(1-x\right)=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow x^2-x+\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}=0\Leftrightarrow x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2},x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\)
Vậy \(min_P=4+2\sqrt{3}\)đạt được khi \(\orbr{\begin{cases}x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\\x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\end{cases}}\)
(11x + 6y + 2015) (x - y + 3) = 0 => x - y + 3 = 0 do x ; y > 0 nên 11x + 6y + 2015 > 0
=> y = x + 3.
=> P = x(x+3) - 5x + 2016 = x2 - 2x + 2016 = (x - 1)2 + 2015 \(\ge\) 2015 với mọi x
Vậy Min P = 2015 khi x - 1 = 0 <=> x = 1 => y = 4
Ta có (x+y)xy=x2+y2-xy
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)
mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy Max A =16 khi \(x=y=\frac{1}{2}\)