\(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

\(\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}-\dfrac{1}{x^2+y^2}\)

\(\ge\dfrac{\left(2+2\right)^2}{x^2+y^2+2xy}-\dfrac{1}{x^2+y^2}=16-\dfrac{1}{x^2+y^2}\)

\(=16-\dfrac{2}{2\left(x^2+y^2\right)}\ge\dfrac{16}{\left(x+y\right)^2}=14\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{2}\)

25 tháng 10 2018

Cách khác

Đặt xy=t

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=1-2t\)

\(\Rightarrow M=\dfrac{2}{t}+\dfrac{3}{1-2t}\)

\(M=\dfrac{2-4t+3t}{t-2t^2}=\dfrac{2-t}{t-2t^2}\)(đến đây dùng phương pháp delta)

12 tháng 10 2017

2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)

5 tháng 12 2018

Còn câu 1 nữa ạ, ai giải giúp em vớii

30 tháng 5 2019

Bạn bik lm chưa chỉ mik bài 1 vs nhaok

NV
30 tháng 5 2019

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\) khi \(x=y\)

25 tháng 10 2018

\(\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=2\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{2}\)

2 tháng 6 2018

a) \(4xy\le\left(x+y\right)^2=1\)

=> \(xy\le4\)

Dấu "=" xảy ra <=> x = y = 1/2

b) A = \(A=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2xy+\dfrac{2}{xy}+4=\left(32xy+\dfrac{2}{xy}\right)-30xy+4\ge8-\dfrac{30}{4}+4=\dfrac{9}{2}\)

Dấu "=" xảy ra <=> x = y = 1/2

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

24 tháng 6 2017

\(P=\dfrac{18}{x^2+y^2}+\dfrac{5}{xy}=\dfrac{18\left(x+y\right)^2}{x^2+y^2}+\dfrac{5\left(x+y\right)^2}{xy}=\dfrac{18\left[\left(x^2+y^2\right)+2xy\right]}{x^2+y^2}+\dfrac{5\left[\left(x^2+y^2\right)+2xy\right]}{xy}=18+\dfrac{36xy}{x^2+y^2}+\dfrac{5\left(x^2+y^2\right)}{xy}+10=28+\left[\dfrac{36xy}{x^2+y^2}+\dfrac{5\left(x^2+y^2\right)}{xy}\right]\overset{Cauchy}{\ge}28+2\sqrt{\dfrac{36xy}{x^2+y^2}.\dfrac{5\left(x^2+y^2\right)}{xy}}=28+2.6\sqrt{5}=28+12\sqrt{5}\)

=> \(P^{ }_{min}=28+12\sqrt{5}\) khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{36xy}{x^2+y^2}=\dfrac{5\left(x^2+y^2\right)}{xy}\\x+y=1\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5-\sqrt{5}}{4}\\y=\dfrac{\sqrt{5}-1}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{\sqrt{5}-1}{4}\\y=\dfrac{5-\sqrt{5}}{4}\end{matrix}\right.\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

Ta có \(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{xy}{x^2+xy+y^2}\)

\(=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}-\frac{1}{9}\)

Áp dụng BĐT AM-GM:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{1}{9}}=\frac{2}{3}\)

Do đó: \(B\geq \frac{8}{9}.2+\frac{2}{3}-\frac{1}{9}=\frac{7}{3}\Leftrightarrow B_{\min}=\frac{7}{3}\)

Dấu bằng xảy ra khi $x=y$