K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Ta có :

\(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow x^2-a^2=b^2-y^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

Mà \(x+y=a+b\)

\(\Leftrightarrow x-a=b-y\)

+ Nếu \(x-a=b-y=0\Leftrightarrow x=a;b=y\)      (1)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

\(\Leftrightarrow0=0\left(TM\right)\)

+ Nếu \(x-a=b-y\ne0\Leftrightarrow x+a=b+y\)

\(\Leftrightarrow x-y=b-a\)

Lại có : \(x+y=a+b\)

\(\Leftrightarrow\hept{\begin{cases}2x=2b\\-2y=-2a\end{cases}}\)Cái trên là cộng vế với vế 2 ptr, cái dưới là trừ vế cho vế của 2 ptr nhé )

\(\Leftrightarrow\hept{\begin{cases}x=b\\y=a\end{cases}}\) (2)

Từ (1) và (2) \(\Leftrightarrow x=a;y=b\)hoặc \(x=b;y=a\)

\(\Rightarrow x^n+y^n=a^n+b^n\)(đpcm)

21 tháng 10 2019

x+y=a+b => (x+y)2 =(a+b)2 => x2 +2xy+ y2 =a2 +2ab+b2 => xy=ab 

ta sẽ chứng mính bằng phương pháp quy nạp.

Với n =1, n=2 thì đẳng thức đúng

Giả sử  xn-1 +yn-1 = an-1 +bn-1; xn +yn = an +bn , ta sẽ chứng minh đẳng thức cũng đúng với n+1

\(x^{n+1}+y^{n+1}=\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=\left(a^n+b^n\right)\left(a+b\right)-\)ab(an-1 +bn-1 ) = an+1 + bn+1 (đúng)

vậy đẳng thức đúng với mọi n

2 tháng 4 2020

+) Ta có : \(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow x^2-a^2=b^2-y^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\) ( * ) 

+) Ta có : \(x+y=a+b\)

\(\Leftrightarrow x-a=b-y\)

Thay \(x-a=b-y\) vào ( * ) ta được : 

\(\left(b-y\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

\(\Leftrightarrow\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)

\(\Leftrightarrow\left(b-y\right)\left[\left(x+a\right)-\left(b+y\right)\right]=0\)

\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b-y=0\\x+a-b-y=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}b=y\\x+a=b+y\end{cases}}\)

TH1 :\(b=y\)

\(\Rightarrow b-y=0\)

​​\(\Rightarrow x-a=0\)

\(\Rightarrow x=a\)

\(\Rightarrow x^n+y^n=a^n+b^n\) ( 1 ) 

TH2 : \(x+a=b+y\)

Mà \(x-a=b-y\)

\(\Rightarrow x+a+x-a=b+y+b-y\)

\(\Rightarrow2x=2b\)

\(\Rightarrow x=b\)

\(\Rightarrow a=y\)

\(\Rightarrow x^n+y^n=a^n+b^n\) ( 2 ) 

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\) đpcm 

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
13 tháng 4 2016

Theo bài ra ta có:

x + y = a + b => (x + y)2 = (a + b)2 <=> 2xy = 2ab <=> xy = ab

Do đó, x và y là nghiệm của PT: t2 -(a + b).t  - ab = 0

\(\Delta=\left(a+b\right)^2-4ab=...=\left(a-b\right)^2\)

=> x = a hoặc x = b; y = b hoặc y = a

Từ đó hiển nhiên xn + yn = an + bn đúng. 

13 tháng 4 2016

Đính chính: PT: t-(a+b)t + ab = 0

14 tháng 10 2018

\(A=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

vậy A luôn luôn dương với mọi x

b: \(B=x^2-xy+y^2\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2\)

\(=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)

c: \(C=-x^2+4x-10\)

\(=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)\)

\(=-\left(x-2\right)^2-6< 0\)

1 tháng 10 2018

các bạn giúp mình nhé !!!

18 tháng 5 2016

cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n

-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5

18 tháng 5 2016

1,a) (x-1)(x^2+x+1)=x^3-1

VT=x3+x2+x-x2-x-1

=(x3-1)+(x2-x2)+(x-x)

=x3-1+0+0

=x3-1=VP (dpcm)

tương tự a

21 tháng 3 2016

x+y = a+b 
⇔ x – a = b –y (1) 
x² +y² = a² +b² 
⇔ x² –a² = b² –y² 
⇔ (x – a)(x+a) = (b – y)(b+y) 
_ nếu x – a = b –y = 0 thì x = a và y = b ⇒ xⁿ +yⁿ = aⁿ +bⁿ 
_ nếu x – a = b –y ≠ 0, chia hai vế biểu thức cho x – a và b –y tương ứng ta được: 
x + a = b + y (2) 
cộng (1) và (2) theo vế ta được x = b 
trừ (1) và (2) theo vế ta được y = a 
⇔ xⁿ +yⁿ = aⁿ +bⁿ