Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+2.4+y^2=25\)
\(\Leftrightarrow x^2+8+y^2=25\)
\(\Leftrightarrow x^2+y^2=17\)
b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow2xy+5=9\)
\(\Leftrightarrow2xy=4\)
\(\Leftrightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(5-2\right)=9\)
a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy
thay x+y=5;xy=4 vào biểu thức ta có:
52-2×4=25-8=17
a) \(x^2+y^2=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy=a^2-2b\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=a\left(x^2+2xy+y^2-xy\right)\)
\(=a\left[\left(x+y\right)^2-xy\right]=a\left(a^2-b\right)=a^3-ab\)
Lời giải:
\(x^4+y^4=x^4+2.x^2y^2+y^2-2(xy)^2\)
\(=(x^2+y^2)^2-2(xy)^2=[(x+y)^2-2xy]^2-2(xy)^2\)
\(=(a^2-2b)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
---------------------------
\(x^5+y^5=(x^4+y^4)(x+y)-x^4y-xy^4\)
\(=(x^4+y^4)(x+y)-xy(x^3+y^3)=(x^4+y^4)(x+y)-xy[(x+y)^3-3xy(x+y)]\)
\(=(a^4-4a^2b+2b^2)a-b(a^3-3ab)\)
\(=a^5-4a^3b+2ab^2-a^3b+3ab^2=a^5-5a^3b+5ab^2\)
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
\(a)\)
\(x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)
\(=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
\(b)\)
\(x^5+y^5\)
\(=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)
\(=\left(a^4-a^2b+2b^2\right)a-xy[\left(x+y\right)^3-3xy\left(x+y\right)]\)
\(=a^5-4a^3b+2ab^2-b\left(a^3-3ab\right)\)
\(=a^5-4a^3b+2ab^2-a^3b+3ab^2\)
\(=a^5-5a^3b+5ab^2\)
a) \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
b) \(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-x^2y^2\left(x+y\right)\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)