K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17

14 tháng 7 2017

Giải:

a) \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(\Leftrightarrow M=\left[x^3-3xy\left(x-y\right)-y^3\right]-\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow M=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay \(x-y\) vào, được:

\(M=7^3-7^2=294\)

Vậy ...

b) \(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(\Leftrightarrow N=x^3+x^2-y^3+y^2+xy-3xy-3xy\left(x-y\right)-95\)

\(\Leftrightarrow N=x^3+x^2-y^3+y^2-2xy-3xy\left(x-y\right)-95\)

\(\Leftrightarrow N=\left[x^3-y^3-3xy\left(x-y\right)\right]+\left(x^2-2xy+y^2\right)-95\)

\(\Leftrightarrow N=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay \(x-y\) vào, được:

\(N=7^3+7^2-95=297\)

Vậy ...

Chúc bạn học tốt!

19 tháng 10 2019

a ) có \(x^2+y^2+4x-2xy+4y+2019=\left(x-y\right)^2+4\left(x-y\right)+2019=49+28+2019=2096\)

b) \(x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=343-49=294\)

c)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)=x^3-y^3+x^2+y^2+xy-3x^2y+3xy^2-3xy=\left(x-y\right)^3+\left(x-y\right)^2=343+49=392\)

19 tháng 9 2017

Linh_Men

2 tháng 10 2017

a)\(M=\text{[}x^3-3xy\left(x-y\right)-y^3\text{]}-\left(x^2-2xy+y^2\right)\)

\(M=\left(x-y\right)^3-\left(x-y\right)^2\)

\(\Rightarrow M=7^3-7^2\)

\(M=294\)

25 tháng 9 2018

\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn ) 

\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(M=\left(x-y\right)^3-\left(x-y\right)^2\)

\(M=7^3-7^2\)

\(M=294\)

Chúc bạn học tốt ~ 

a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b) \(B=x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2.\left(-12\right)=1-\left(-24\right)=25\)

c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

29 tháng 7 2019

d, D = x3 + y3 = ( x + y)3 - 3xy( x + y) = -1 - 36 = -37

a) \(A=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

b) \(B=x^2+y^2=x^2-y^2+2xy-2xy=\left(x-y\right)^2+2xy=9+2.10=29\)

c) \(C=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

d) \(D=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=-27+3.10.\left(-3\right)=-27-90=-117\)