Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
Giải:
a) \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(\Leftrightarrow M=\left[x^3-3xy\left(x-y\right)-y^3\right]-\left(x^2-2xy+y^2\right)\)
\(\Leftrightarrow M=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay \(x-y\) vào, được:
\(M=7^3-7^2=294\)
Vậy ...
b) \(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(\Leftrightarrow N=x^3+x^2-y^3+y^2+xy-3xy-3xy\left(x-y\right)-95\)
\(\Leftrightarrow N=x^3+x^2-y^3+y^2-2xy-3xy\left(x-y\right)-95\)
\(\Leftrightarrow N=\left[x^3-y^3-3xy\left(x-y\right)\right]+\left(x^2-2xy+y^2\right)-95\)
\(\Leftrightarrow N=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay \(x-y\) vào, được:
\(N=7^3+7^2-95=297\)
Vậy ...
Chúc bạn học tốt!
a ) có \(x^2+y^2+4x-2xy+4y+2019=\left(x-y\right)^2+4\left(x-y\right)+2019=49+28+2019=2096\)
b) \(x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=343-49=294\)
c)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)=x^3-y^3+x^2+y^2+xy-3x^2y+3xy^2-3xy=\left(x-y\right)^3+\left(x-y\right)^2=343+49=392\)
\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn )
\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(M=\left(x-y\right)^3-\left(x-y\right)^2\)
\(M=7^3-7^2\)
\(M=294\)
Chúc bạn học tốt ~
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2.\left(-12\right)=1-\left(-24\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
a) \(A=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
b) \(B=x^2+y^2=x^2-y^2+2xy-2xy=\left(x-y\right)^2+2xy=9+2.10=29\)
c) \(C=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
d) \(D=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=-27+3.10.\left(-3\right)=-27-90=-117\)
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)