K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

Ta có HPT:

\(\left\{{}\begin{matrix}x-y=5\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-y^2=5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2=-6-5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Thay x = -2, y = 3 vào, ta được:

A = (-2)3 - 33 - (-2)2 + 2.(-2).3 - 32

A = -8 - 27 - 4 + (-12) - 9

A = -60

27 tháng 9 2021

Sửa:

Ta có HPT:

\(\left\{{}\begin{matrix}x-y=-5\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-y^2=-5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2=-6-\left(-5y\right)\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)

Thay x = -3, y = 2 vào, ta được:

A = (-3)3 - 23 - (-3)2 + 2.(-3).2 - 22

A = -27 - 8 - 9 + (-12) - 4

A = -60

29 tháng 10 2023

Bài 1:

a: \(x\left(x+y\right)+5y-x^2\)

\(=x^2+xy+5y-x^2\)

=xy+5y

b: \(\left(x-2\right)\left(y+1\right)-xy+4\)

\(=xy+x-2y-2-xy+4\)

=-2y+x+2

c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)

\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)

=2x+6y-4

d: \(\left(x-4\right)^2+8x-7\)

\(=x^2-8x+16+8x-7\)

\(=x^2+9\)

 

18 tháng 8 2020

Gọi x,y là nghiệm của phương trình:

\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)

\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)

a)\(x^2+y^2=1^2+2^2=5\)

b)\(x^3+y^3=1^3+2^3=9\)

c)\(x^4+y^4=1^4+2^4=17\)

d)\(x^5+y^5=1^5+2^5=33\)

e)\(x^6+y^6=1^6+2^6=65\)

16 tháng 8 2020

CÓ:     \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)

CÓ:     \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)

CÓ:     \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)

CÓ:     \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)

\(=51-2.9=51-18=33\)

CÓ:     \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)

\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)

\(=99-34=65\)

16 tháng 8 2020

\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)

\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)

\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)

26 tháng 9 2021

b, ( 5/2 - x ) ^2

=25/4-4/5x+x^2

c,( xy/2 - x/3 ) ( xy/2 + x/3)

=(xy/2)^2-(x/3)^2

c: \(\left(\dfrac{xy}{2}-\dfrac{x}{3}\right)\left(\dfrac{xy}{2}+\dfrac{x}{3}\right)=\dfrac{x^2y^2}{4}-\dfrac{x^2}{9}\)

e: \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)

27 tháng 8 2018

= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012

= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012

= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012

= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012

= 1013 - 3.1012 + 3.101 + 2012

= 1002013

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

21 tháng 10 2021

\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)

\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)

21 tháng 10 2021

all ạ

12 tháng 9 2023

\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)