Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
a)
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)
b)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)
\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)
\(=x^3+y^3+z^3-3xyz\)
a) \(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
b)\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(a^2-2b-b\right)\)
Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.
Lời giải:
Ta có:
$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$
$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$
Mà:
$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$
Do đó: $\text{VT}> x^2+y^2$ (đpcm)
a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ
x2+y2=x2+2xy+y2-2xy =(x+y)2-2xy =22-2.3 =4-3 =1
x3+y3=x3+3x2y+3xy2+y3-3x2y-3xy2 =(x+y)3-3xy(x+y) =23-3.3.2 =-10
câu còn lại tương tự nhé
( x+ y)^2 = 3^2
=> x^2 + 2xy + y^2 = 9
=> x^2 + y^2 = 9 - 2xy = 9-2.2 = 9 - 4 = 5
Vậy A = 5
b) ( x^2 + y^2 )^2 = 5^2
=> x^4 + y^4 + 2x^2y^2 = 25
=> x^4 + y^4 = 25 - 2x^2y^2
=> x^4 + y^4 = 25 - 2(xy)^2
= 25 - 2 (2)^2 = 25 - 2.4 = 25 - 8 = 17