K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

\(Tacó\)

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2\ge2\Rightarrow S_{min}=2\)

Dấu "=" xảy ra khi: x=y=1

Vậy GTNN của S là 2. <=> x=y=1

Cauchy-Schwarz dạng Engel 

\(S=x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{2^2}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

... 

14 tháng 5 2021

Ta có x2-xy+y2=\(\left(\dfrac{x+y}{2}\right)^2+3\left(\dfrac{x-y}{2}\right)^2\)\(\ge\)\(\left(\dfrac{x+y}{2}\right)^2\)

=>\(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}\ge\dfrac{x+y}{2\left(x+y+2z\right)}\)(1) . Tương tự ...

Đặt \(\left\{{}\begin{matrix}y+z=a\\x+z=b\\x+y=c\end{matrix}\right.\)(a,b,c>0). Khi đó ta có :

S=\(\dfrac{1}{2}\left(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\right)\ge\dfrac{3}{4}\)  (Netbit)

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều

 

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:

$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$

Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$

20 tháng 3 2016

Áp dụng  BĐT bunhiacopxki ta được:

2S=(x2+y2)(1+1)\(\ge\)(x+y)2=4

=>S\(\ge\)2

Dấu "=" xảy ra khi: x=y=1

Vậy GTNN của S là 2 tại x=y=1

18 tháng 8 2017

+ từ x^2+y^2+xy=1 => (x - 1/2*y)^2 + 3/4*y^2 = 1 
đặt x - 1/2*y = sina và √3/2*y = cosa <> y = 2cosa / √3 và x = sina + cosa /√3 
thay vào b ta có 
b = (sina + cosa/√3)^2 - ( sina + cosa/√3). 2cosa/√3 + 8/3*(cosa)^2 
= (sina)^2 + sin2a/√3 + (cosa)^2/3 - sin2a/√3 - 2/3*(cosa)^2 + 8/3*(cosa)^2 
= (sina)^2 + 7(cosa)^2 / 3 = 1+ 4(cosa)^2 / 3 = 1 + 2(1 + cos2a) / 3 = 5/3 + 2cos2a/ 3 
=> 1=< b <=7/3 
+ min = 1 khi cos2a = -1 hay cosa = 0 <> y = 0 và x = +- 1 
+ max = 7 / 3 khi cos2a = 1 hay sina = 0 <> x = 1 + 1/√3 và y = 2 / √3 hoạc x = 1 - 1 / √3 
và y = -2 / √3

18 tháng 8 2017

copy lố rồi bn ơi

Áp dụng BĐT C-S ta có:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow S=x^2+y^2\ge\frac{4}{2}=2\)

Khi x=y=1

28 tháng 4 2015

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

12 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}\)

\(\Rightarrow\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\).

Tương tự, \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\).

Cộng vế với vế hai bđt trên rồi rút gọn ta được:

\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge8\)

\(\Rightarrow P\ge8+2013=2021\).

Đẳng thức xảy ra khi x = y = 2.

Vậy....