![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay x=\(\frac{10+4y}{3}\) vào biểu thức A ta có:
A=\(\left(\frac{10+4y}{3}\right)^2\)+\(y^2\)=\(\frac{100+80y+16y^2}{9}\)+\(y^2\)=\(\frac{100+80y+25y^2}{9}\)=\(\frac{\left(5y\right)^2+2.5y.8+8^2+36}{9}\)=\(\frac{\left(5y+8\right)^2}{9}\)+4
Ta có:\(\frac{\left(5y+8\right)^2}{9}\)\(\ge\)0 với mọi y => A=\(\frac{\left(5y+8\right)^2}{9}\)+4 \(\ge\)4
Vậy A đạt giá trị nhỏ nhất là 4 dấu = xảy ra khi y= -8/5 và x=6/5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(x^2+y^2>=\frac{\left(x+y\right)^2}{2}=2\)(tự cm : nhân chéo chuyển vế hoặc ghi áp dụng BĐT Bunhiacopxki đều được)
=>Min M=2
Dấu "=" xảy ra khi x=y=1
b)x-2y=3
=>x=2y+3
=>\(N=x^2-5y^2=\left(2y+3\right)^2-5y^2=-y^2+12y+9=-\left(y^2-12y+36\right)+45\)
\(N=-\left(y-6\right)^2+45< =45\)
=>Max N=45
Dấu = xảy khi \(\hept{\begin{cases}y-6=0\\x=2y+3\end{cases}< =>\hept{\begin{cases}y=6\\x=15\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-3x^2+2=\left(x^2-\frac{3}{2}\right)^2+\left(2-\frac{9}{4}\right)\) GTNN=-1/4 khi x=+-căn (3/2)
(x^2+3)^2 >=9 GtNN=9 khi x=0
(x-1)+(y+2)^2>=(x-1)
GTNN=(x-1) khi y=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=3x^2+y^2-2xy-3x+2\)
\(=x^2-2xy+y^2+2x^2-3x+2\)
\(=\left(x-y\right)^2+2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)
do\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-\frac{3}{4}\right)^2\ge0\end{cases}\Rightarrow P\ge\frac{7}{8}}\)
\(\Rightarrow P_{min}=\frac{7}{8}\)đạt được khi \(x=y=\frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
Ta có \(x+y=1\Rightarrow y=1-x\)
\(\Rightarrow M=3x^2+y^2+2=3x^2+\left(1-x\right)^2+2=3x^2+x^2-2x+1+2\)
\(=4x^2-2x+3=\left[\left(2x\right)^2-2.2x.\frac{1}{2}+\frac{1}{4}\right]+\frac{11}{4}\)
\(=\left(2x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\) có GTNN là \(\frac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-\frac{1}{2}=0\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{3}{4}\end{cases}}}\)
Vậy \(M_{min}=\frac{11}{4}\) tại \(x=\frac{1}{4};y=\frac{3}{4}\)
x+y=1 => x=0 , y=1 hoac x=1 va y=0
khi x=0 va y=1 thi : M = 3 x 02 + 12 + 2=3
khi x=1 va y=0 thi : M = 3 x 12 + 02+ 2 =5
vậy giá trị nhỏ nhất của M là 3