Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\frac{\left(a+b\right)^2}{1}=\left(a+b\right)^2\)
Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\x+y=1\end{cases}}\Leftrightarrow...\) (tự tìm nha! Mình đang bận)
Vậy...
tại sao
\(\frac{a^2}{x^2}\)+\(\frac{b^2}{y^2}\)\(\ge\)\(\frac{\left(a+b\right)^2}{x+y}\)
Câu hỏi của thanh tam tran - Toán lớp 7 - Học toán với OnlineMath
\(x+y=1\Leftrightarrow x^2+2xy+y^2=1\)
mà \(x^2+y^2\ge2xy\Rightarrow x^2-2xy+y^2\ge0\)cộng vế với vế ta được
\(x^2+y^2\ge\frac{1}{2}\)
\(A=\frac{1}{X^2+y^2}+\frac{1}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{0,5}=6\)
\(A_{min}=6\)dấu = khi x=y= 1/2
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Rightarrow x=y=\frac{1}{2}\)
Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa
Ta có: \(a^2\ge0\forall a\)
\(b^2\ge0\forall b\)
GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất
GTNN của \(a^2;b^2\)là 0
\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)
Vậy GTNN của P là 0
a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)
Mà \(\left|y-1\right|+\left|5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)
Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)
b) Ta có: \(\left|y-6\right|\ge0\forall y\)
\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)
\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)
Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)
Vậy \(x>1\)
Tham khảo nhé~
cj MAi
Bài giải
Ta có : \(P=\frac{a^2}{x}+\frac{b^2}{y}\) đạt GTNN khi \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN
Mà \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN khi \(a^2\) và \(b^2\) cùng đạt giá trị nhỏ nhất
\(\Rightarrow\text{ }a^2\text{ và }b^2=0\)
\(\Rightarrow\text{ }a,b=0\)
\(\text{Vì }0\) chia số nào cũng bằng 0
\(\Rightarrow\text{ }GTNN\text{ của }P=0\)