\(K=\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Áp dụng BĐT cô si cho:

!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)

!!) Tương tự ta có:

\(3x+y\ge2\sqrt{3xy}\ge6\)

Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)

Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3

16 tháng 7 2018

cám ơn nha

16 tháng 5 2018

Câu trả lời trước bị sai bucminh nên làm lại.

Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6

Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12

Theo bđt cô si và t \(\ge\)12 ta được :

Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)

Đẳng thức xảy ra <=> x=2 và y=3

15 tháng 5 2018

\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)

Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được

\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)

Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6

<=> x=2,y=3

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

Ta có \(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{xy}{x^2+xy+y^2}\)

\(=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}-\frac{1}{9}\)

Áp dụng BĐT AM-GM:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{1}{9}}=\frac{2}{3}\)

Do đó: \(B\geq \frac{8}{9}.2+\frac{2}{3}-\frac{1}{9}=\frac{7}{3}\Leftrightarrow B_{\min}=\frac{7}{3}\)

Dấu bằng xảy ra khi $x=y$


a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)

 

29 tháng 8 2021

Giá trị nhỏ nhất là 3

AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Lời giải:

Ta có: \(A=\frac{3}{x^2+y^2}+\frac{4}{xy}=3\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{5}{2xy}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}=4\)

Áp dụng BĐT Am-Gm: \(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{5}{2xy}\geq 10\)

Do đó: \(A\geq 3.4+10\Leftrightarrow A\geq 22\)

Vậy \(A_{\min}=22\Leftrightarrow x=y=\frac{1}{2}\)

16 tháng 1 2024

Áp dụng BĐT AM-GM ta có 

x^3/1+y +1+y/4+1/2 >= 3 căn 3(x^3/8) =3x/2

Tương tự: y^3/1+z + 1+z/4 +1/2 >= 3z/2

z^3/1+x +1+x/4 + 1/2 >= 3z/2

=> P + x+y+z+3/4 +3/2 >= 3(x+y+z)/2

<=> P >= [5(x+y+z)-3]/4 -3/2

<=> P >= 5(x+y+z)/4 -9/4

Mặt khác x+y+z>=xy+yz+zx>=3

( bạn tự chứng minh nhé)

=> P>= 15/4 -9/4=3/2

=>P >=3/2

Dấu = xảy ra khi x=y=z=1 

Nhớ tick cho mình nhé

 

16 tháng 1 2024

Áp dụng BĐT AM-GM ta có 

x^3/1+y +1+y/4+1/2 >= 3 căn 3(x^3/8) =3x/2

Tương tự: y^3/1+z + 1+z/4 +1/2 >= 3z/2

z^3/1+x +1+x/4 + 1/2 >= 3z/2

=> P + x+y+z+3/4 +3/2 >= 3(x+y+z)/2

<=> P >= [5(x+y+z)-3]/4 -3/2

<=> P >= 5(x+y+z)/4 -9/4

Mặt khác x+y+z>=xy+yz+zx>=3

( bạn tự chứng minh nhé)

=> P>= 15/4 -9/4=3/2

=>P >=3/2

Dấu = xảy ra khi x=y=z=1 

Nhớ tick cho mình nhé

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

Ta có:

\(P=\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)

\(\Leftrightarrow P=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)

Áp dụng BĐT AM-GM:

\(2x+y\geq 2\sqrt{2xy}=2\sqrt{4}=4\)

Ta có:

\(P=\frac{2x+y}{2}+\frac{8}{2x+y}-\frac{5}{2x+y}\)

Áp dụng BĐT AM-GM: \(\frac{2x+y}{2}+\frac{8}{2x+y}\geq 2\sqrt{4}=4\) (1)

\(2x+y\geq 4\Rightarrow \frac{5}{2x+y}\leq \frac{5}{4}\Rightarrow -\frac{5}{2x+y}\geq \frac{-5}{4}\) (2)

Từ \((1);(2)\Rightarrow P\geq 4+\frac{-5}{4}=\frac{11}{4}\)

Vậy P min \(=\frac{11}{4}\Leftrightarrow (x,y)=(1,2 )\)

6 tháng 10 2018

\(A=x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(\dfrac{9}{4}x+\dfrac{1}{x}\right)+\left(\dfrac{9}{4}y+\dfrac{1}{y}\right)-\dfrac{5}{4}\left(x+y\right)\ge3+3-\dfrac{5}{4}.\dfrac{4}{3}=6-\dfrac{5}{3}=\dfrac{13}{3}\)

Dấu <=> xảy ra <=> \(x=y=\dfrac{2}{3}\)

a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)

b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)

c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)

d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)