Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\sqrt{10}sin^2a\); \(y=\sqrt{10}cos^2a\)
(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))
Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)
\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)
Đặt \(sin^2acos^2a=l\)
\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)
\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)
theo đề bài ta có (x+y)^2>=1
2(x^2+y^2)>=(x+y)^2>=1
x^2+y^2>=1/2
(x^2+y^2)^2>=1/4
2(x^4+y^4)>=(x^2+y^2)^2>=1/4
x^4+y^4>=1/8(đề bạn ghi thiếu thì phải)
Ta có: \(x>y>0\)
\(\Rightarrow x^5-y^5< x^5+y^5\)
\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\) \(\left(1\right)\)
Lại có: \(x>y>0\)
\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(x^4+y^4< 1\)
Vậy \(x^4+y^4< 1\)
Ta có: \(x>y>0\)
\(\Rightarrow x^5-y^5< x^5+y^5\)
\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1^{\left(1\right)}\)
Lại có: \(x>y>0\)
\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)(2)
Từ (1) và (2) suy ra : \(x^4+y^4< 1\)
Vậy \(x^4+y^4< 1\)(đpcm)
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)
\(x>y\Rightarrow x^4>y^4\)
\(y>z\Rightarrow y-z>0\)
\(x>z\Rightarrow z-x< 0\)
\(\Rightarrow y-z>z-x\)
\(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)
\(x>y\Rightarrow x-y>0\)
Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)
Xét hiệu:
\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{4}{x+y}=\dfrac{xy+y^2+x^2+xy-4xy}{xy\left(x+y\right)}=\dfrac{x^2+y^2-2xy}{xy\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\RightarrowĐPCM\)