\(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng với x;y dương)

Vậy BĐT đã cho đúng

Dấu "=" xảy ra khi \(x=y\)

25 tháng 12 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)

25 tháng 12 2019

Ta có vì : x,y > 0

và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Từ đề bài ta có:

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)

Áp dụng đẳng thức Cô-si:

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Vậy....

đpcm.

3 tháng 5 2018

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

11 tháng 10 2019

Dat \(A=\frac{x^4+y^4}{x^4-y^4}-\frac{xy}{x^2-y^2}+\frac{x+y}{2\left(x-y\right)}\)

\(=\frac{2x^4+2y^4-2xy\left(x^2+y^2\right)+\left(x+y\right)^2\left(x^2+y^2\right)}{2x^4-2y^4}\)

\(=\frac{2x^4+2y^4+\left(x^2+y^2\right)\left[\left(x+y\right)^2-2xy\right]}{2x^4-2y^4}\)

\(=\frac{2x^4+2y^4+\left(x^2+y^2\right)^2}{2x^4-2y^4}\)

\(\Rightarrow A\ge\frac{2x^4+x^4}{2x^4}=\frac{3}{2}\)

\(\Rightarrow P=2017A\ge2017.\frac{3}{2}=\frac{6051}{2}\)

Dau '=' xay ra khi \(y=0\)