K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
30 tháng 5 2020
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
26 tháng 6 2020
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)
Dấu "=" xảy ra <=> x = y = z = 2
GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2
Theo giả thiết \(x+y\le3\to xy+\left(y+4\right)\le y\left(3-y\right)+y+4=-\left(y-2\right)^2+8\le8.\)
Do đó theo bất đẳng thức Cauchy-Schwartz \(\frac{1}{xy}+\frac{9}{y+4}\ge\frac{\left(1+3\right)^2}{xy+y+4}\ge\frac{16}{8}=2.\)
Nhân cả hai vế với \(\frac{2}{3}\) ta suy ra \(\frac{2}{3xy}+\frac{6}{y+4}\ge\frac{4}{3}.\) Dấu bằng xảy ra khi \(y=2,x=1.\) Vậy giá trị bé nhất của \(P\) là \(\frac{4}{3}\).