K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Áp dụng bất đẳng thức Cosi cho 2 số dương ta có \(x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow xy\le\frac{2017^2}{4}=\frac{4068289}{4}\) Dấu bằng xảy ra khi và chỉ khi \(x=y=\frac{2017}{2}=1008,5\)

 Vậy giá trị lớn nhất của tích xy là \(\frac{4068289}{4}\)\(\Leftrightarrow x=y=1008,5\)

NHỚ K MÌNH NHA

30 tháng 4 2017

Nhầm rồi b. x,y là tự nhiên khác 0 mà.

28 tháng 5 2016

Áp dụng bất đẳng thức Cosi, ta có : 

\(53=2x+3y\ge2\sqrt{2x.3y}=2\sqrt{6}.\sqrt{xy}\Rightarrow xy\le\left(\frac{53}{2\sqrt{6}}\right)^2\)

Do đó : \(P=\sqrt{xy+4}\le\sqrt{\left(\frac{53}{2\sqrt{6}}\right)^2+4}=\sqrt{\frac{2905}{24}}\)

Vậy : Max \(P=\sqrt{\frac{2905}{24}}\Leftrightarrow\left(x;y\right)=\left(\frac{53}{4};\frac{53}{6}\right)\)

28 tháng 5 2016

Mình đã trả lời bạn rồi đó!

http://olm.vn/hoi-dap/question/594638.html

16 tháng 11 2016

Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)

Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)

Theo đề bài có

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)

Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)

\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)

\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)

\(\Leftrightarrow-0,5\le2013-A\le0,5\)

\(\Leftrightarrow2012,5\le A\le2013,5\)

Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)

Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)

5 tháng 4 2021

Áp dụng bất đẳng thức Cosi ta có:

\(x+y\ge2\sqrt{xy}\)

\(\Rightarrow2\sqrt{S}\le12\Leftrightarrow\sqrt{S}\le6\Rightarrow S\le36\)

Dấu = xảy ra khi x=y=6

7 tháng 10 2016

\(x^3+y^3+xy=\left(x+y\right)^3-3xy\left(x+y\right)+xy=1-2xy\) (vì x+y=1)

Ta có \(P\) đạt giá trị lớn nhất khi \(1-2xy\) đạt giá trị nhỏ nhất \(\Leftrightarrow xy\) đạt giá trị lớn nhất

Mà x+y = 1 (tức tổng x,y không đổi) nên xy dạt giá trị lớn nhất khi x = y và x+y = 1 => x = y = 1/2 thay vào P được

\(MaxP=\frac{1}{\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^3+\frac{1}{2}.\frac{1}{2}}=2\)

26 tháng 5 2015

\(\frac{x^4}{4}+\frac{y^4}{4}\ge2.\sqrt{\frac{x^4}{4}.\frac{y^4}{4}}=\frac{x^2y^2}{2}\) (BĐT Cô - si)

=> \(xy\left(2013-\frac{xy}{2}\right)\ge\frac{x^2y^2}{2}-2014\)

<=> \(2013xy-\frac{x^2y^2}{2}\ge\frac{x^2y^2}{2}-2014\) <=> \(x^2y^2-2013xy-2014\le0\) 

<=> \(\left(xy\right)^2-2014xy+xy-2014\le0\)

<=> \(\left(xy-2014\right)\left(xy+1\right)\le0\)

<=> \(-1\le xy\le2014\)

Vậy Max (xy) = 2014 khi  x2 = y và xy= 2014 => x = y = \(\sqrt{2014}\) hoặc x = y = - \(\sqrt{2014}\)

Min (xy) = -1 khi x2 = y2 và xy = -1 => x = 1; y = -1 hoặc x =- 1; y = 1

21 tháng 3 2020

\(P=\sqrt{x+1}+\sqrt{y+1}\ge\sqrt{x+1+y+1}=\sqrt{x+y+2}=\sqrt{101}\)

GTNN\(P=\sqrt{101}\)

\(P=\sqrt{x+1}+\sqrt{y+1}\)

\(=>\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le2\left(x+1+y+1\right)=2.101=202\)

GTLN \(P=202\)