K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

\(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\)

Có: \(xy\le\frac{\left(x+y\right)^2}{4}\)với mọi x, y

Chứng minh: \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\)đúng với mọi x, y.

=> \(xy\le\frac{1}{4}\)=> \(-3xy\ge-\frac{3}{4}\)

=> \(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)

"=" xảy ra <=> (x -y)^2 =0 <=> x =y.

10 tháng 1 2021

A=(x+y)3 - 3xy(x+y)+3x2y2

=8-6xy+3x2y2

=3(x2y2-2xy+1)+5

=3(xy+1)2+5 ≥5

dấu = xảy ra ⇔ xy=1 ⇒ x=y=1

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

14 tháng 9 2018

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

14 tháng 9 2018

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

=> 1/xy + 1/yz + 1/xz = 0

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

NV
8 tháng 1 2023

Từ giả thiết:

\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)

\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)

Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)

\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.