Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$ với $k\in\mathbb{R}$. Ta có:
$x_1y_1=k=x_2y_2$
$\Leftrightarrow 8x_1=-12x_2$
$\Leftrightarrow x_1=-1,5x_2$
Thay vô $x_1-5x_2=-39$ thì:
$-1,5x_2-5x_2=-39\Leftrightarrow -6,5x_2=-39$
$\Rightarrow x_2=6$
$x_1=-1,5x_2=-9$
b.
$xy=x_1y_1=(-9).8=-72$
$\Rightarrow y=\frac{-72}{x}$
Lời giải:
a. Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$ với $k$ là số thực nào đó.
Ta có:
$x_1y_1=k=x_2y_2$
$\Leftrightarrow 7x_1=8y_2\Rightarrow x_1=\frac{8}{7}y_2$
Thay vô điều kiện 1 thì:
$2.\frac{8}{7}y_2-3y_2=30$
$\Leftrightarrow y_2=-42$
$x_1=\frac{8}{7}y_2=-48$
b. Từ kết quả phần a suy ra:
$xy=x_1y_1=-48.7=-336$
$\Rightarrow y=\frac{-336}{x}$
x,y là hai đại lượng tỉ lệ nghịch
=>\(x_1\cdot y_1=x_2\cdot y_2\)
=>\(14\cdot y_1=21\cdot3=63\)
=>\(y_1=4,5\)
=>\(k=x_1\cdot y_1=14\cdot4,5=63\)
Ta có: xy=k
=>xy=63
=>\(y=\dfrac{63}{x}\)
Thay y=-3 vào y=63/x, ta được:
\(\dfrac{63}{x}=-3\)
=>\(x=-\dfrac{63}{3}=-21\)