K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

GTLN của x*y = 15

25 tháng 10 2016

ta có: \(\left(x+y\right)^2\ge4xy\Rightarrow8^2\ge4xy\Rightarrow16\ge xy.\)

vậy GTNN của x.y = 16 khi x = y = 4

17 tháng 9 2018

Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)\(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.

Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.

Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.

như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1

18 tháng 9 2018
Chào bạn

Ta cá:\(K=x^2-2\times x-y=x^2-\left(2\times x+y\right)\)

Để K đạt GTLN

Suy ra x^2 lớn nhất nên x lớn nhất

2x+y nhỏ nhất nên y nhỏ nhất(2x Ko nhỏ nhất vi x lớn nhất nên 2x lớn nhất)

Mà \(y\ge0\)

Ta chọn y=0,thay vào 2x+y ta đc

\(2\times x+0\le4\)

\(\Rightarrow2\times x\le4\)

\(\Rightarrow x\le2\)

Mà x lớn nhất nên ta chọn x=2 do đá k sẽ bằng

\(K=2^2-2\times2-0=4-4=0\)

Vậy K đạt GTLN là 0 tại x =2 và y=0

nhớ h cho mk nha

25 tháng 2 2020

Chứng minh BĐT phụ :

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Thật vậy : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) ( luôn đúng )

Áp dụng vào bài toán ta có : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2025\ge\left(x+y\right)^2\)

\(\Leftrightarrow-45\le x+y\le45\)

Vậy : \(min\left(x+y\right)=-45,max\left(x+y\right)=45\)

30 tháng 12 2019

Tìm min :

Ta có : \(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)

\(\Leftrightarrow A\le8\)

30 tháng 12 2019

Tìm max

\(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\)

\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)

\(\Leftrightarrow A\ge\frac{8}{3}\)

9 tháng 2 2019

\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(\Rightarrow1\ge2xy\)

\(\Rightarrow\frac{1}{2}\ge xy\)

Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Vậy \(Min_{x+y}=\sqrt{2}\)

Làm tương tự với max

9 tháng 2 2019

Thêm đk: x,y>0

Tìm max:

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra <=> x=y

KL:...............................

6 tháng 6 2023

Từ giả thiết, x+y=100-z\(\leq\)40

Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)

Dấu "=" xảy ra khi x=y=20 và z=60