\(x^4-4x^3-2x^2+12x+9\) là bình phương của 1 số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

\(A=x^4-4x^3-2x^2+12x+9\\ =x^2\left(x^2-4x-2+\dfrac{12}{x}+\dfrac{9}{x^2}\right)\\ =x^2\left[\left(x^2-6+\dfrac{9}{x^2}\right)-\left(4x-\dfrac{12}{x}\right)+4\right]\\ =x^2\left(x-\dfrac{3}{x}-2\right)^2\\ =\left[x\left(x-\dfrac{3}{x}-2\right)\right]^2\\ =\left(x^2-3-2x\right)^2\)

Do \(x\in Z\) nên \(\Rightarrow x^2-3-2x\) là số nguyên.

Vậy \(A=\left(x^2-3-2x\right)^2\)là bình phương 1 số nguyên.

9 tháng 11 2015

Bài này có nhiều cách, có thể dùng đồng nhất hệ số để chứng minh số tìm được là số nguyên.

\(A=x^4-4x^3-2x^2+12x+9=x^4-2x^3-2x^3-3x^2-3x^2+4x^2+6x+6x+9\)

\(=x^4-2x^3-3x^2-2x^3+4x^2+6x-3x^2+6x+9=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)

\(\left(x^2-2x-3\right)\left(x^2-2x-3\right)=\left(x^2-2x-3\right)^2=\left(\left(x-3\right)\left(x+1\right)\right)^2\left(đpcm\right)\)

19 tháng 10 2017

\(B=x^4+4x^2+9-2.2x.x^2+2.2x.3-2.3.x^2\)

\(=\left(x^2-2x-3\right)^2\)

16 tháng 7 2019

\(B=x^4-4x^3-2x^2+12x+9\)

\(=\left(x^4-2x^3-3x^2\right)-\left(2x^3-4x^2-6x\right)-\left(3x^2-6x-9\right)\)

\(=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)

\(=\left(x^2-2x-3\right)^2=\left(x^2+x-3x-3\right)^2=\left(x+1\right)^2\left(x-3\right)^2\)

Hok tốt !

27 tháng 8 2017

=(x2-2x-3)2

=>đpcm

21 tháng 10 2017

Giai rõ hơn dc ko

25 tháng 10 2019

\(B=\left(x-3\right)^2\left(x+1\right)^2=\left(x^2-2x-3\right)^2\)

Vì x nguyên nên \(x^2-2x-3\) nguyên nên ta có đpcm.

#Walker

21 tháng 7 2018

a, (x+2)^2

b, (x-3)^2

c, (2x+3)^2

d, (3x-1)^2

e, (x+5)^2

g, (4x-1)^2

21 tháng 7 2018

a) x2 + 4x + 4 = ( x + 2 )2

b) x2 - 6x + 9 = (x-3)2

c) 4x2 + 12x +  9 = (2x)2 + 2.2x.3 + 3^2 = (2x + 3)2

d) 9x2 - 6x + 1 = (3x)2 - 2.3x.1 + 1^2 = (3x-1)2

e) x2 + 25 +10x = x2 + 2.x.5 + 52 = (x+5)2

g) 16x+1 - 8x = (4x)2 - 2.4x.1 + 1^2 = (4x-1)2

22 tháng 2 2020

ai giúp mình câu (a) với ạ

NV
22 tháng 2 2020

ĐKXĐ: \(x\ne\pm\frac{3}{2}\)

\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)

20 tháng 5 2018

1a)

\(\hept{\begin{cases}2x-2017=1\\12x-2017=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=2018\\12x=2018\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1009\\x=\frac{1009}{6}\end{cases}}\)

Em  nghĩ là như vậy . Nếu có gì em sẽ sửa.

20 tháng 5 2018

Gọi số thứ nhất là a ( 0 < a < 125 )

Số thứ hai là 4a

Ta có phương trình :

\(a+4a=125\)

\(\Leftrightarrow5a=125\)

\(\Leftrightarrow a=25\left(tm\right)\)

Vậy số thứ 1 là 25

Số thứ 2 = 25 x 4 = 100

Vậy ...